Homoallylamines to Allylhalides, Acryloyl chloride and Maleic anhydride

Alexey V. Varlamov, Ekaterina V. Boltukhina, Fedor I. Zubkov* and Eugenia V. Nikitina

Organic Chemistry Department of Russian Peoples' Friendship University, 6, Miklukho-Maklayia St., Moscow 117198, Russian Federation. Fax. +7 095 9550779; e-mail: fzubkov@sci.pfu.edu.ru

Konstantin F. Turchin

Center of Drugs Chemistry - All-Russian Institute for Chemical and Pharmaceutical Research, 7, Zubovskaya St., Moscow 119815, Russian Federation Received December 8, 2005

Acylation of 4-(furyl-2)-4-R-aminobut-1-enes and 4-R-4-furfurylaminobut-1-enes with maleic anhydride, acryloyl chloride or allylhalides provided 3 -aza-10-oxatricyclo[5.2.1.0 ${ }^{1,5}$]decenes. The tricycles are formed via an initial amide formation followed by a stereoselective exoIMDAF (Intramolecular Diels-Alder of Furan). In case of competing cycloaddition (for compounds possessing two furan or two dienophilic moieties) the most substituted fivemembered cycle is preferably annulated. Refluxing of 4-R-4-furfurylaminobut-1-enes in acetic anhydride led to exo-3-aza-11-oxatricyclo[6.2.1.0 ${ }^{1,6}$]undecenes with the pseudoequatorial substituent $R-4$. Treatment of 3-aza-10-oxatricyclo[5.2.1.0 $0^{1,5}$]decenes with PPA at $90-110{ }^{\circ} \mathrm{C}$ promoted cyclic ether opening, aromatization and intramolecular cyclization reactions sequence to give the corresponding tetracyclic compounds - tetrahydroisoindolo[2,1-a]quinolines and tetrahydroisoindolo[2,1-b][2]benzazepines in good yields. Unusual products of ipso-substitution in aromatic ring were obtained on cyclization of $N-p-R$-substituted 2-allyl-4-oxo-3-aza-10oxatricyclo[5.2.1.0 $0^{1,5}$]dec-8-enes.
J. Heterocyclic Chem., 43, 1479 (2006).

Introduction.
Recently we have proposed several effective synthetic approaches to the potential biologically active compounds such as hydrogenated hydroxyisoquinolines 1 [1,2], isoindolo[2,1-a]quinoline- 2 [3-5] and iso-indolo[2,1-b]benzazepinecarboxylic acids $\mathbf{3}$ [6,7] (Scheme 1) using furylsubstituted homoallylamines 4, 5 as starting materials. Amines $\mathbf{4}$ and 5 were obtained from easily available imines 6 and 7 correspondingly. The intramolecular furan Diels-Alder reaction (IMDAF) [8] between the alkenyl fragment and the furan core in the amines $\mathbf{4}$ or $\mathbf{5}$ was the key step of the transformations mentioned above.

The present study had two major aims. First it was interesting to investigate the competing intramolecular cycloaddition processes in the case of amines $\mathbf{4}$ and 5 possessing several potential diene and/or dienophilic
centers. The second aim was to synthesize a series of carboxyl non substituted isoindolo[2,1-a]quinolines $\mathbf{2}$ (-benzazepines $\mathbf{3}$) as their further functionalization could allow us to find some perspective ways for the construction of the patented pharmacophores analogues [9-14].

Results and Discussion.
We have chosen the reaction sequence shown in Scheme 1 to solve these problems basing on the array of butenylamines 10a-f, 11a-c, and 12a-c as starting materials. It is worth noting that the homoallylamines 10a,f [2], 11a-c [3], and 12a-c [6,7] were obtained and characterized by our group earlier, and the aryl- 10b, hetaryl substituted amines $\mathbf{1 0 c} \mathbf{c} \mathbf{e}$ were first synthesized. Amines 10-12 (Fig. 1) were obtained in 71-86\% yield except the pyridylsubstituted compound 10 e moderate yield of which could be explained by the low solubility of

Scheme 1

the intermediate imine-allylmagnesium bromide complex both in ether and THF.
As we have shown earlier [3], cycloaddition of maleic anhydride to 4-furyl-4-aminobutenes 5 was preceded by the preliminary N -acylation leading to
in the analogous manner through the formation of the intermediate N-acryloyl derivative 13a $(\mathrm{R}=\mathrm{H})$. Since the intermediates $\mathbf{1 3}$ possessed two dienophilic fragments (allyl and N-acryloyl) in their molecules two competing ways of the $[4+2]$ intra-

Figure 1

10a-e

$10 f$

Compound 10a 10b
10c
R

| Yield, $\%$ | 72 | 78 | 82 | 78 | 50 | 84 | 76 | 75 | 86 | 83 | 83 | 71 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

the formation of the intermediate maleinamide 13b ($\mathrm{R}=\mathrm{CO}_{2} \mathrm{H}$, Scheme 2). Obviously the interaction between acrylic anhydride and amine $\mathbf{1 0 f}$ proceeded
molecular cycloaddition were theoretically possible: \mathbf{A} (isoindole formation) and \mathbf{B} (formation of isoquinolines).

Actually the way \mathbf{A} resulting in the formation of N cyclohexyl substituted exo-oxoepoxyisoindolones 14 realized that was established experimentally. Reaction proceeded regio- and stereospecifically giving corresponding exo-oxoepoxyisoindolone 14 a and exo-isoindolonecarboxylic acid 14b in satisfactory yields. It's worth noting that six-membered cycle annulation (products of type 15 formation) is commonly preferable compared to the five-membered cycle formation (products of type 14 formation). We explain our experimental data in terms of higher reactivity of the electron deficient olefin fragment (viz $\mathrm{R}-\mathrm{CH}=\mathrm{CH} \rightarrow \mathrm{CO}$) in IMDAF reactions compared to the electron rich allylic one.

The structure of compounds $\mathbf{1 4 a , b}$ was established relying on the ${ }^{1} \mathrm{H}$ NMR spectroscopic data (see the Experimental section). In particular, the H atoms of the olefin fragment $\mathrm{CH}_{2}=\mathrm{CH}$ - in these compounds gave the signals at $\delta 5.02-5.04\left(\mathrm{H}-1^{\prime}\right)$ and $5.81\left(\mathrm{H}-2^{\prime}\right) \mathrm{ppm}$. The exo-configuration of the Diels-Alder adducts $\mathbf{1 4}$ was confirmed by comparing the values of spin-spin coupling constants of oxabicyclo[2.2.1]heptene moiety H -atoms with the literature data [15-17]. Thus $J_{7, \text {,6eno }}$ value in 14b was close to zero which fact confirmed the exoorientation of $\mathrm{CO}_{2} \mathrm{H}$-group and 5 -amide substituent. In case of exo-orientation 6-H atom would give a signal with $J_{6 \text { exo, } 7}$ greater than 3 Hz (usually $4.0-4.5 \mathrm{~Hz}$) [15]. The spatial structure of the adduct $\mathbf{1 4 a}$ was established in the same manner.
Interaction between difuryl derivative 10d and dimethyl acetylenedicarboxylate (DMAD) in mild reaction conditions proceeded as Michael addition of secondary
amine to a triple bond (Scheme 3) resulting in the formation of cis- N -dimethoxycarbonylvinylsubstituted homoallylamine 16 in a quantitative yield. Cis-orientation of the methoxycarbonyl fragments (E) was established by comparing with the literature data $[18,19]$.

While the thermal cyclization of homoallylamine $\mathbf{1 0 d}$ was not observed even after prolonged boiling in xylene, the intramolecular Diels-Alder reaction of its N-vinylsubstituted analogue $\mathbf{1 6}$ proceeded smoothly in boiling toluene giving exo-4-furylsubstituted isoquinoline 17. Its stereochemistry was established based on the ${ }^{1} \mathrm{H}$ NMR data. Thus the exo-orientation of $\mathrm{C}_{5}-\mathrm{C}_{6}$ bond in the oxabicyclo[2.2.1]heptene fragment was determined similarly to the compounds $\mathbf{8}$ [2], and the pseudooequatorial position of the 4-furyl substituent (cis- in relation to the oxa-bridge) was confirmed by considering $J_{4,5 \mathrm{ax}}=11.0$ and $J_{4,5 \mathrm{eqv}}=7.0 \mathrm{~Hz}$ values. According to these values as well as by analogy with the 4-thienylsubstituted tricycle 26c (as indicated below, Fig. 2) the piperidine moiety in the molecule of $\mathbf{1 7}$ has the "slightly twisted tub" conformation. Obviously the easiness of thermal [4+2] cycloaddition in case of alkene $\mathbf{1 6}$ was determined by the flattening of the amide fragment owing to the conjugation of the unshared electron pair of the nitrogen atom with the multiple bond, and as a consequence the approach of the furan and allylic substituents in the IMDAF intermediate.

It should be emphasized that the reaction of amine $\mathbf{1 0 d}$ with double molar excess of DMAD as well as boiling of enamine 16 with the equimolar amount of DMAD in toluene did not lead to the formation of the prospective pincer-addition product 18 [20-22] (Scheme 3). In each case a mixture of DMAD addition products to both furan rings in bisfuran 16 was isolated from a multicomponent reaction mixture in a low combined yield along with a small amount of isoquinoline 17. Their spatial structure was not studied in detail.

The interaction between homoallylamine 10 d and maleic anhydride proceeded smoothly as a regio- and stereospecific process (Scheme 4). Initially formed maleinamide 19 (was not isolated) cyclized instantly to exo-adduct 20. The latter was isolated as a mixture of two geometrical isomers based on the orientation of the allyl group in relation to the $1,7-$ oxabridge. The ratio of isomers was $\sim 1: 6$ according to the ${ }^{1} \mathrm{H}$ NMR spectroscopic data (Scheme 4).

Interaction between acryloyl chloride and amine 10d in the presence of NEt_{3} brought to the formation of N acryloylamide 21 in almost a quantitative yield. The intramolecular cyclization of diene 21 into the epoxyisoindolone 22 began as early as at $25-30^{\circ} \mathrm{C}$ that brought to the contamination of obtained amide 21 with about 7% of adduct 22 according to the ${ }^{1} \mathrm{H}$ NMR data. Heating of acryloylamide 21 in toluene led to the rapid formation of exo-adduct 22. Exo-epoxyisoindolone 22 was isolated as a mixture of two diastereoisomers in a ratio of $\sim 1: 2$ (similarly to the isomers 20).

Geometrical isomers of the isoindolones 20 and 22 were not separated. Compound 20 was isolated as white powder almost insoluble in chloroform and acetone. In the case of 3-aza-10-oxabicyclo[5.2.1.0 $0^{1,5}$]decene 22 isolated from the reaction mixture as a lightyellow oil, separation of the geometrical isomers appeared to be impossible owing to the equal retention factor of these isomers.

Alkylation of amine 10d with allylbromide in the presence of potash proceeded smoothly giving diallylderivative 23 in good yield (Scheme 4). Heating of furfurylamine 23 in acetone was accompanied by considerable resinification of the reaction mixture (we suppose it took place owing to the side intermolecular [4+2] cycloaddition reactions). According to the ${ }^{1} \mathrm{H}$ NMR spectrum of the reaction mixture product 24 was also formed as a mixture of geometrical isomers but only one of them was isolated as an individual substance after the column chromatography in 33% yield. It was not possible to establish the orientation of allyl radical in relation to the oxabridge. It is interesting to note that in the latter case we observed no traces of the prospective alternative IMDAF products such as the isomeric epoxyisoindole $\mathbf{2 5 *}^{*}$ and isoquinoline $\mathbf{2 5}$ in the reaction mixture. This fact means that when the competing intramolecular [4+2] cycloaddition is possible the fivemembered rings 24 would preferably be formed compared to the sixmembered ones 25 (the entropic factor). The absence of the isomer 25* among the IMDAF products is the example of a well known qem-dialkyl effect (angle compression Thorpe-Ingold effect) or of the "reactive rotamer effect" proposed by E. Jung, both phenomena being principally the same [23-25].

Unsymmetrically substituted butenylamines 10a-d cyclized in boiling acetic anhydride giving exo-adducts 26a-d in satisfactory yields (Scheme 5). The only

exception was the impossibility to produce 4-(3-pyridyl)substituted tricycle 26e (condensed derivative of anabasine, $\mathrm{R}=\mathrm{Py}-3$) because of the resinification of starting amine 10 e in the reaction conditions. The ${ }^{1} \mathrm{H}$ NMR spectra of the obtained exo-3-aza-11-oxatricyclo[6.2.1.0 ${ }^{1,6}$]undec-9-enes 26 contained characteristic signals of the three spin-linked bicyclic H-atoms: H-10 (d, $\delta 5.99-6.36 \mathrm{ppm}$), H-9 (dd, 6.26-6.42 ppm), and H-8 (dd, $4.85-4.94 \mathrm{ppm})$ with $J_{8,9}=0.9-1.8$ and $J_{9,10}=5.8-6.0 \mathrm{~Hz}$.

Figure 2. The X-ray crystal structures of isoquinoline 26c
But the widening of $\mathrm{H}-2$ and $\mathrm{H}-4$ signals (because of the slow rotation of the acetyl fragment around the amide bond) did not allow to determine the orientation of the C 4 substituent using the NMR spectral data. To solve this problem we generated a monocrystal of the tricycle $\mathbf{2 6 c}$ and its molecular structure was unambiguously elucidated by X-ray data (Fig. 2).

The X-ray analysis [26] of 3-acetyl-4-(2-thienyl)-3-aza-11oxatricyclo[6.2.1.0 ${ }^{1,6}$]undec-9-ene 26c showed that compound $\mathrm{C}_{15} \mathrm{H}_{17} \mathrm{NO}_{2} \mathrm{~S}$ crystallized in monoclinic lattice, the space group $P 2_{I} / n$. Oxabicyclo[2.2.1]heptene moiety of the 26c molecule was exo-annulated at $\mathrm{C}(7)-\mathrm{C}(8)$ bond with piperidine one (Fig. 2, crystallographic numeration used). Piperidine cycle had "twist-boat" conformation proved by the values of torsion angles between the planes $\mathrm{N}(1) \mathrm{C}(5) \mathrm{C}(6) \mathrm{C}(7)$, $\mathrm{C}(5) \mathrm{C}(6) \mathrm{C}(7) \mathrm{C}(8), \mathrm{C}(6) \mathrm{C}(7) \mathrm{C}(8) \mathrm{C}(9), \mathrm{C}(7) \mathrm{C}(8) \mathrm{C}(9) \mathrm{N}(1)$, $\mathrm{C}(8) \mathrm{C}(9) \mathrm{N}(1) \mathrm{C}(5)$, and $\mathrm{C}(9) \mathrm{N}(1) \mathrm{C}(5) \mathrm{C}(6)$ equal to $32.1,-63.8,32.7,25.9,-62.3$, and 31.8° correspondingly. $N(1)$-Acetyl substituent in the piperidine ring occupied the "pseudoaxial" position, and C(5)-thienyl one "pseudoequatorial". H-Atom at C(7) was "pseudoaxial" oriented in piperidine cycle (trans- according to thienyl cycle), and it was endo-oriented in oxabicyclo[2.2.1]heptene fragment.

Compounds 26a,b,d were proposed to have the same conformation of the piperidine fragment with "pseudoequatorial" orientation of R-substituent at $\mathrm{C}-4$ on the basis of the data mentioned above above (these products have almost identical ${ }^{1} \mathrm{H}$ NMR data).

Noncarboxyl substituted isoindolo[2,1-a]quinolines 2 and isoindolo[2,1-b][2]benzazepines $\mathbf{3}$ were synthesized basing on the same starting material - furylsubstituted homoallylamines 5 (Scheme 1). Acylation of homoallylamines 11a-c and 12a-c with acryloyl chloride was carried out in boiling acetonitrile in the presence of excess triethylamine (Scheme 6). Resulting N-phenyl(benzyl)-3-aza-4-oxo-10-oxatricyclo $\quad\left[5.2 .1 .0^{1,5}\right]$ dec-8-enes 28a-f were isolated in satisfactory to high yields. The use of toluene as the reaction medium in case of 11 c results in lowering tricyclic product 28c yield: 48% compared to 66% in acetonitrile.

Initial acylation of furfurylamines 11, 12 with acryloyl chloride led to the intermediate amides 27a-f, which underwent further $[4+2]$ cycloaddition to give cycloadducts 28. That was confirmed using amine 11a as a model compound. In this case two individual products 27a and 28a were isolated by column chromatography of the reaction mixture in the ratio of $2: 1$ in 75% overall yield. Their structure was confirmed based on the array of spectroscopic data. Heating of acryloylamide 27a at 100 ${ }^{\circ} \mathrm{C}$ led to the tricyclic product $\mathbf{2 8 a}$ formation.

$\begin{array}{llllll}\mathrm{R} & \mathrm{Ph} & \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}-p & \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{OMe}-p \mathrm{Bn} \quad \mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}-p \mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{OMe}-p\end{array}$
$\begin{array}{lllllll}\text { Yield, \% } & 50 & 64 & 66 & 86 & 68 & 87\end{array}$

The cycloaddition reaction proceeded stereospecifically and only the exo-adducts 28 were formed according to the ${ }^{1} \mathrm{H}$ NMR spectra of crude reaction mixtures. The structure of adducts 28 was established based on H-5, H-6 and H-7 oxabicycloheptene protons J values compared to the literature data $[15,27-31]$ as well as by analogy with compounds 14a, 20, 22.

Exo-3-aza-10-oxatricyclo[5.2.1.0 ${ }^{1,5}$]decenes 28 were isolated as the mixtures of geometric isomers \mathbf{A} and \mathbf{B} (Figure 3). The \mathbf{A} / \mathbf{B} isomeric ratio varied from $10 / 1$ to $2 / 1$ depending on the N substituent nature. The isomers of compounds 28a-e were separated by column chromatography that allowed to thoroughly analyse their steric structure.

The orientation of the methallyl fragment at C-2 in the isomeric pairs 28A/28B was established basing on ${ }^{1} \mathrm{H}$ NMR NOE values and by comparison of δ_{H} and δ_{C} values in these pairs. It was interesting to compare the data received for the 28A/28B isomeric pairs with those for the pairs of their carboxylic analogues 9

NOE, \%	Isomer				Interatomic dist. (calc.), d (A)	
	9A	9B	28 cA	28cB*		
	(trans)	(cis)	(trans)	(cis)	(trans)	(cis)
$\eta_{\mathrm{H}-2, \mathrm{H}-5}$	<1	2.5	<1	3.1	2.92	2.21
$\eta_{\mathrm{H}-2, \mathrm{H}-9}$	<1	4.5	<1	3.3	2.70	2.07
$\eta_{\mathrm{H}-5, \mathrm{H}-9}$	2.2	2.5	2.7	2.6	2.21	2.24
* As the ov	nals of 2 H erlapped	$\begin{aligned} & -3^{\prime} \text { and } \\ & 1 \text { CDC } \end{aligned}$ ere ca	H-6B pro the NOE ied out in	tons in 28 and exa $\mathrm{C}_{6} \mathrm{D}_{6}$ so	C isomer J measur tions.	ppreciably ts

Figure 3. ${ }^{1} \mathrm{H}$ NMR NOE values $\left(\eta \mathrm{H}_{\mathrm{i}}, \mathrm{H}_{\mathrm{j}}\right)$ and interatomic distances (d) in the isomeric pairs $\mathbf{2 8 c A} / \mathbf{2 8 c B}$ and $\mathbf{9 A} / \mathbf{9 B}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$.
synthesized earlier [3] (Scheme 1). The measurements were obtained for all the isomers $\mathbf{2 8 A} / \mathbf{2 8 B}$, and the data described below are given only for the methoxyphenyl substituted pairs of compounds $\mathbf{2 8 c A} / \mathbf{2 8 c B}$ and $\mathbf{9 A} / \mathbf{9 B}$ (Figure 3).
${ }^{1} \mathrm{H}$ NMR NOE values indicating the increase of H_{i} intensity when H_{j} signal was saturated $\left(\eta_{\mathrm{Hi}}\left\{\mathrm{H}_{\mathrm{j}}\right\}\right.$, \%) are represented in table of Figure 3 for $\mathrm{H}-2, \mathrm{H}-5$ and $\mathrm{H}-9$ protons of $\mathbf{2 8 c A} \mathbf{2 8 c B}$ and $\mathbf{9 A} / \mathbf{9 B}$ isomeric pairs in the averaged mode: $\eta_{\text {нi, } \mathrm{Hj}}=\left[\eta_{\text {нi }}\left\{\mathrm{H}_{\mathrm{j}}\right\}+\eta_{\text {нj }}\left\{\mathrm{H}_{\mathrm{i}}\right\}\right] / 2(\%)$, where H_{i}, $\mathrm{H}_{\mathrm{j}}: \mathrm{H}-2, \mathrm{H}-5, \mathrm{H}-9 ; \mathrm{H}_{\mathrm{i}} \neq \mathrm{H}_{\mathrm{j}}$.

Interatomic distances $d(\AA)$ between the specified hydrogen atoms in the isomers with cis- and transorientation of the 2 -alkenyl fragment in relation to the 1,7-oxabridge obtained by the molecular modeling are represented in Figure 3. The analysis of the data summarised in the table of Figure 3 shows that $\eta_{\mathrm{H}_{-2, \mathrm{H}-5}}$ and $\eta_{\mathrm{H}-2, \mathrm{H}-9}$ values could be compared with $\eta_{\mathrm{H}-5, \mathrm{H}-9}$ values only in the case of the isomers with cis-orientation of $\mathrm{H}-2$ and $\mathrm{H}-5$ protons in which molecules $\mathrm{d}_{\mathrm{H}-2, \mathrm{H}-5} \approx \mathrm{~d}_{\mathrm{H}-2, \mathrm{H}-9} \approx \mathrm{~d}_{\mathrm{H}-5, \mathrm{H}-9}$, whereas in the isomers with trans-orientation of this protons $\mathrm{d}_{\mathrm{H}-2, \mathrm{H}-5}$ and $\mathrm{d}_{\mathrm{H}-2, \mathrm{H}-9}$ appreciably exceed $\mathrm{d}_{\mathrm{H}-5, \mathrm{H}-9}$.

It is possible to note certain correlation between δ_{H} and δ_{C} values in $\mathbf{2 8 c A} / \mathbf{2 8 c B}$ and $\mathbf{9 A} / \mathbf{9 B}$ isomeric pairs based on their configuration established, that could be used as the criteria for determining configuration of the analogous compounds. Thus, the following correlations can be used for the NMR spectra of the CDCl_{3} solutions: $\delta_{\mathrm{H}-3^{\prime}}($ trans $)>$ $\delta_{\mathrm{H}-3^{\prime}}($ cis $)(\Delta \delta \sim 0.2) ; \delta_{\mathrm{C}-9}($ cis $)>\delta_{\mathrm{C}-9}($ trans $)(\Delta \delta \sim 2)$. For example, application of these correlations to the data obtained for the $28 \mathbf{a} \mathbf{A} / \mathbf{2 8 a B}$ isomeric pair in which: $\delta_{\mathrm{H}-3^{\prime}}$ $(\mathbf{2 8 a A})=2.40$ and $2.54>\delta_{\mathrm{H}-3^{\prime}}(\mathbf{2 8 a B})=2.28 \mathrm{ppm} ; \delta_{\mathrm{C}-9}$ $(\mathbf{2 8 a B})=134.0>\delta_{\mathrm{C}-9}(\mathbf{2 8 a A})=132.0 \mathrm{ppm}(\Delta \delta=2)$, allows to assert that compounds 28aA and 28aB are the isomers with the trans- and cis-orientation of $\mathrm{H}-2$ and $\mathrm{H}-5$ protons in relation to the 1,7 -oxabridge accordingly [31].

Interaction between aminobutenes 11a, 12a and allylhalides resulted in the formation of exo-3-aza-10oxatricyclo[5.2.1.0 ${ }^{1,5}$]dec-8-enes 29, 31 (Scheme 7). N Benzylsubstituted amine 12a easily underwent alkylation with allylbromide at $40^{\circ} \mathrm{C}$ to form the allyl derivative $\mathbf{3 0}$. Cycloaddition started on boiling the reaction mixture in acetone (established by TLC). A mixture of allyl

derivative $\mathbf{3 0}$ /adduct $\mathbf{2 9}$ was formed in the ratio of $1 / 2.6$ according to the ${ }^{1} \mathrm{C}$ NMR data. Heating of the obtained mixture at $100{ }^{\circ} \mathrm{C}$ in toluene led to the formation of $\mathbf{3 0} / \mathbf{2 9}=1 / 5$ mixture. N-Phenylsubstituted aminobutene 11a underwent alkylation only after preliminary substitution of bromine atom in allylbromide for iodine. The intermediate allyl derivative instantly underwent [4+2] cycloaddition in boiling acetone to form the desired tricycle 31. Obviously it can be explained by the fact that nitrogen atom in the intermediate N-benzyl- N-allylderivative $\mathbf{3 0}$ is pyramidal $\left(s p^{3}\right)$, whereas in the intermediate N-phenyl- N-allyl derivative nitrogen atom is flat $\left(s p^{2}\right)$ due to the conjugation with the aromatic ring and therefore leads to the formation of the ordered six-membered transition state that favors [4+2] cycloaddition process.
Intramolecular cyclization of the methallyl fragment in tricycles 28a-f was carried out in PPA at $90-110{ }^{\circ} \mathrm{C}$ (Scheme 8). N-Phenylsubstituted adducts 28a-c and N benzylsubstituted adduct 28d easily underwent intramolecular electrophilic substitution in this reaction conditions to give desired isoindolo[2,1-a]quinolines 32a-c and isoindolo[2,1-b][2]benzazepine 33a in good yields. Products 32a-c and 33a existed as single conformers with the pseudo-axial H-6a (11b) according to the ${ }^{1} \mathrm{H}$ NMR data.
Scheme 8

Compound 32a 32b 32c 33a 33b 34b 33c 34c

R	H	Me	OMe H	Me	Me	OMe OMe		
Yield, \%	61	70	64	61	6	20	15	15

In the case of $N-p$-methyl- and N - p-methoxy-benzylsubstituted adducts 28e,f the cyclization brought to the formation of the mixtures containing two products possessing benzazepine fragment in their molecules according to the ${ }^{1} \mathrm{H}$ NMR data. These products had almost identical retention factor and equal molecular mass that
made their chromatographic separation impossible. In the case of methyl substituted product 33b the isomers formed were separated by multiple fractional crystallization. It should be notified that the yield of a $\mathbf{3 3 b} \mathbf{+ 3 4 b}$ mixture isolated after the first recrystallization was around 65%. The low yield of products $\mathbf{3 3 c + 3 4 c}(30 \%)$ was due to the considerable resinification of the reaction mixture in the reaction conditions.

The NOE experiment showed that compounds 33b and 34b were the isomers according to the position of the methyl group in the aromatic ring. Thus the ${ }^{1} \mathrm{H}$ NMR spectrum of 33b contained the signals analogous to those in the ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{3 4 b}$. The greatest difference in the chemical shifts of equal multiples was observed for the methyl-substituted benzene ring and equal to 0.05 ppm . It gave us grounds to suggest the products $\mathbf{3 3 b}$ and 34b to be the regioisomers judging by the arrangement of the methyl-substituted benzene ring relative to the remaining part of the molecule. This suggestion was confirmed by measuring the NOE values indicating the increase of H_{i} intensity when H_{j} signal was saturated $\left(\eta_{\text {нi }}\left\{\mathrm{H}_{\mathrm{j}}\right\}, \%\right)$. On saturation of the high field signal of the Me-13 group at $\delta 1.50 \mathrm{ppm}$ in the case of $\mathbf{3 4 b}$ or at $\delta 1.52$ ppm in the case of 33b the intensity increase of the doublet signals at $\delta 7.25 \mathrm{ppm}$ with ${ }^{3} J=8.0 \mathrm{~Hz}(\eta=21 \%)$ or at $\delta 7.17 \mathrm{ppm}$ with ${ }^{4} J=1.5 \mathrm{~Hz}(\eta=23 \%)$ was observed correspondingly. Since only $\mathrm{H}-1$ situated alongside one of the $\mathrm{Me}-13$ groups can show the intensity increase in the present experiment, the data obtained have given the evidence of the fact that the methyl substituent in the benzene ring was attached to $\mathrm{C}-2$ in case of $\mathbf{3 3 b}$, and to C 3 in case of $\mathbf{3 4 b}$. The analogous process occurred in the case of $\mathbf{2 8 f}$, but unfortunately we did not manage to isolate the products formed $(\mathbf{3 3 c}, \mathbf{3 4 c})$ in pure form.

Scheme 9

Formation of the unusual regioisomer 34b (34c) could be explained in terms of ipso-substitution in the aromatic ring. Thus, the tertiary carbo-cation formed upon protonation of the methallyl fragment attacked the quaternary carbon atom attached to the aminomethene group [32-34] and subsequent 1,2 -shift resulted in the formation of the regioisomers $\mathbf{3 3 b}$ and $\mathbf{3 4 b}$ (Scheme 9).

It is significant that we have not observed similar ipsosubstitution in the synthesis of [2]benzazepines earlier [6,7,35,36].

Unfortunately we did not succeed in carrying out the desired cyclization of adducts $\mathbf{2 9}, \mathbf{3 1}$ into tetracyclic nonoxygenated amines similar to 2, $\mathbf{3}$ (32-34). Products formed from $\mathbf{2 9}$ or $\mathbf{3 1}$ in acidic conditions turned out to be very unstable.

Isoindolo[2,1-b][2]benzazepines 33 underwent regioselective electrophilic substitution in the benzazepine unit. Thus, heating of 33a with chloroacetylchloride in dichloroethane in the presence of AlCl_{3} brought to the formation of the acylation product 35 (Scheme 10). Nitration of the compound 33a with the nitration mixture at $-5-0^{\circ} \mathrm{C}$ proceeded with high-regioselectivity giving 3nitrosubstituted product 36. At room temperatures $\left(\sim 25^{\circ} \mathrm{C}\right)$ the selectivity of the process failed and a mixture of mono- and dinitrosubstituted products was formed.

The position of the substituents in the aromatic ring in the molecules of $\mathbf{3 5}, \mathbf{3 6}$ was established by comparison of their NMR data with those of 3-nitro-8-carboxyisoindolo-[2,1-b][2]benzazepine obtained earlier [6,37].

The long-term reflux of tetrahydroisoindolobenzazepine 33a in nitrobenzene lead to the oxidation of the tetrahydrobenzazepine fragment to form dihydroiso-indolo[2,1-b][2]benzazepine 37 .

The data obtained showed that isoindolo[2,1-b][2]benzazepine system underwent electrophilic substitution at milder conditions and contained a less mobile $\mathrm{H}-11 b$ proton compared to 8-carboxysubstituted analogues 3 [6].

In conclusion, we have shown that, starting from 2furfural and 2-furfurylamine, complex ring systems: isoindolo[2,1-a]quinolines, isoindolo[2,1-b][2]benzazepines and 3-aza-11-oxatricyclo[6.2.1.0 ${ }^{1,6}$]undecenes, could be obtained in a few steps. The IMDAF reaction of furfurylsubstituted homoallylamines with allylhalides, acryloyl chloride and maleic anhydride occurred with high stereoselectivity when competitive ways were possible. Exo-products were exclusively formed; the positional relationship of the oxygen bridge and the allylic function in the diastereoisomers formed was established. In the process of isoindolobenzazepine synthesis the unusual ipso-substitution was discovered.

EXPERIMENTAL

All reagents were purchased from Acros Chemical Co. All solvents were used without further purification. Melting points were determined using a Fisher-Johns melting point apparatus and are uncorrected. IR spectra were obtained in KBr pellets for solids or in thin film for oils (Fourier-transform infrared spectrometer "Infralum FT-801"). NMR spectra ${ }^{1} \mathrm{H}(400 \mathrm{MHz})$ and ${ }^{13} \mathrm{C}(100.6 \mathrm{MHz})$ were recorded for solutions (2-5\%) in deuteriochloroform or DMSO- d_{6} at $30^{\circ} \mathrm{C}$ and traces of chloroform (${ }^{1} \mathrm{H}$ NMR $\delta 7.24,{ }^{13} \mathrm{C}$ NMR 77.00 ppm) or DMSO- $d_{5} \mathrm{H}\left({ }^{1} \mathrm{H}\right.$ NMR $\delta 2.49,{ }^{13} \mathrm{C}$ NMR 39.43 ppm) were used as the internal standard. Mass spectra were obtained by electron ionization at 70 eV on a HP MS 5988 mass spectrometer or a Finnegan MAT95XL chromatomass spectrometer. The purity of the obtained substances and the composition of the reaction mixtures were controlled by TLC Sorbfil $U V^{254}$ plates. The separation of the final products was carried out by column chromatography on $\mathrm{Al}_{2} \mathrm{O}_{3}$ (activated, neutral, $50-200 \mathrm{~mm}$) or by fractional crystallization.
X-Ray data of compound 26 c were collected on an "Inraf-Nonius Cad-4" 3-circle diffractometer at 293 K using graphite monochromated Mo K α radiation ($\lambda=0.71073 \AA$, ω-scanning, $2=2 \theta=60^{\circ}$) [38]. The structures were solved by direct methods using the SHELXS97 [39] program and refined by least-squares method in an anisotropic approximation using the SHELXL97 package [40]. The H-atoms were located geometrical and refined in arid approximation.
Crystal data for 26c [26]: crystal dimensions: $0.47 \times 0.34 \times$ 0.22 mm , colorless prisms, $\mathrm{C}_{15} \mathrm{H}_{17} \mathrm{NO}_{2} \mathrm{~S}$, M 275.36, space group $P 2_{l} / n$, monoclinic, $a=6.422(5), b=7.546(7), c=28.130(9) \AA$, $\beta=90.77(3)^{\circ}, V=1363.1$ (17) $\AA^{3}, \mathrm{~d}_{\text {(calcd. }}=1.342 \mathrm{~g} \times \mathrm{cm}^{-3}$ and $\mathrm{Z}=4$, $\mu=0.235 \mathrm{~cm}^{-1}, \mathrm{~F}(000)=584$. Intensities of 4096 reflections with $\mathrm{I} \geq 0.5 \sigma \mathrm{I}$ (3933 are independent of symmetry) were measured. The final R_{1} value are $0.0592\left(\mathrm{wR}_{2}\left(\mathrm{~F}^{2}\right)=0.2010\right)$ for 3933 with I $\geq 2 \sigma \mathrm{I}\left(\mathrm{R}_{\mathrm{int}}=0.0176\right)$ reflections, $\mathrm{GOOF}=1.000$.
4- R-4- N-Furfurylamino-1-butenes ($\mathbf{1 0 b}-\mathbf{e}$).
Typical Procedure.
The freshly obtained [37,41] aldimine (0.30 mol) was slowly added drop-wise to a stirred solution of allylmagnesium bromide
prepared from allyl bromide ($39 \mathrm{~mL}, 0.45 \mathrm{~mol}$) and magnesium turnings ($22.0 \mathrm{~g}, 0.90 \mathrm{~mol}$) in ether (300 mL) or THF (300 mL) for 10 e at reflux. After the addition of the Schiff base, the reaction mixture was stirred for 1 h at room temperature. The cooled reaction mixture was poured into saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ solution (300 mL) under ice cooling and extracted with ether ($3 \times 100 \mathrm{~mL}$). The organic layer was dried over MgSO_{4} and concentrated. The residue was distilled in vacuo to give products 10b-e as colourless oils.

4-N-Furfurylamino-4-(4-methoxyphenyl)butene-1 (10b).

Yield 60.1 g (78%); bp $167-169^{\circ} \mathrm{C} / 4 \mathrm{mmHg}$; ir: $3320(\mathrm{NH})$, and $1612(\mathrm{C}=\mathrm{C}) \mathrm{cm}^{-1} ;{ }^{1} \mathrm{H} \mathrm{nmr}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 1.93$ (brs, $1 \mathrm{H}, \mathrm{NH}$), 2.38-2.42 (m, 2H, H-3), 3.51 (d, $1 \mathrm{H}, J=14.6 \mathrm{~Hz}$, $\left.\mathrm{NCH}_{2}-\mathrm{A}\right), 3.62(\mathrm{t}, 1 \mathrm{H}, J=6.9 \mathrm{~Hz}, \mathrm{H}-4), 3.67(\mathrm{~d}, 1 \mathrm{H}, J=14.6 \mathrm{~Hz}$, $\mathrm{NCH}_{2}-\mathrm{B}$), 3.80 (s, 3H, OMe), 5.05 (brdd, $1 \mathrm{H}, J=1.1,10.2 \mathrm{~Hz}, \mathrm{H}-$ 1 cis), 5.09 (dd, $1 \mathrm{H}, J=1.1,16.9 \mathrm{~Hz}, \mathrm{H}-1$ trans), $5.68(\mathrm{~m}, 1 \mathrm{H}$, $J=6.6,7.6,10.2,16.9 \mathrm{~Hz}, \mathrm{H}-2), 6.08$ (dd, $1 \mathrm{H}, J=3.2,0.8 \mathrm{~Hz}, \mathrm{H}-$ $\left.\beta^{\prime}\right), 6.29$ (dd, $1 \mathrm{H}, J=3.2,1.8 \mathrm{~Hz}, \mathrm{H}-\beta$), $6.90\left(\mathrm{AA}^{\prime}, 2 \mathrm{H}, J \sim 8.7 \mathrm{~Hz}\right.$, $\mathrm{H}-\mathrm{Ph}$), 7.27 ($\mathrm{BB}^{\prime}, 2 \mathrm{H}, J \sim 8.7 \mathrm{~Hz}, \mathrm{H}-\mathrm{Ph}$), 7.36 (dd, 1H, $J=1.8,0.8$ $\mathrm{Hz}, \mathrm{H}-\alpha$).
Anal. Calcd. for $\mathrm{C}_{16} \mathrm{H}_{19} \mathrm{NO}_{2}$: C, 74.70; $\mathrm{H}, 7.39 ; \mathrm{N}, 5.44$. Found: C, 74.74; H, 7.42; N, 5.39.
4- N -Furfurylamino-4-(2-thienyl)butene-1 (10c).
Yield 57.3 g (82%); bp $130-131^{\circ} \mathrm{C} / 1 \mathrm{mmHg}$; ir: 3320 (NH), and $1630(\mathrm{C}=\mathrm{C}) \mathrm{cm}^{-1} ;{ }^{1} \mathrm{H} \mathrm{nmr}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 1.91$ (brs, $1 \mathrm{H}, \mathrm{NH}$), 2.47 (brt, 2H, $J=6.7 \mathrm{~Hz}, \mathrm{H}-3$), 3.60 (d, $1 \mathrm{H}, J=14.7 \mathrm{~Hz}$, $\mathrm{NCH}_{2}-\mathrm{A}$), $3.77\left(\mathrm{~d}, 1 \mathrm{H}, J=14.7 \mathrm{~Hz}, \mathrm{NCH}_{2}-\mathrm{B}\right), 3.97(\mathrm{t}, 1 \mathrm{H}, J=6.7$ $\mathrm{Hz}, \mathrm{H}-4), 5.05$ (m, 1H, J=9.5 Hz, H-1 cis), 5.08 (m, 1H, $J=17.1$ Hz, H-1trans), 5.69 (m, 1H, J=6.7, 9.5, $17.1 \mathrm{~Hz}, \mathrm{H}-2$), 6.09 (dd, $\left.1 \mathrm{H}, J=3.4,0.9 \mathrm{~Hz}, \mathrm{H}-\beta^{\prime}\right), 6.27$ (dd, $1 \mathrm{H}, J=3.4,1.8 \mathrm{~Hz}, \mathrm{H}-\beta$), $6.90-6.95$ ($\mathrm{m}, 2 \mathrm{H}, J=2.1,3.4,4.3 \mathrm{~Hz}, \mathrm{H}-\beta$ and $\mathrm{H}-\beta^{\prime}$ (thienyl)), 7.19 (dd, 1H, $J=2.1,3.4 \mathrm{~Hz}, \mathrm{H}-\alpha$ (thienyl)), 7.32 (dd, $1 \mathrm{H}, J=1.8$, $0.9 \mathrm{~Hz}, \mathrm{H}-\alpha$).

Anal. Calcd. for $\mathrm{C}_{13} \mathrm{H}_{15} \mathrm{NOS}: \mathrm{C}, 66.95 ; \mathrm{H}, 6.43$; N, 6.00. Found: C, 66.96; H, 6.46; N, 6.08.

4- N -Furfurylamino-4-(2-furyl)butene-1 (10d).

Yield 50.8 g (78%); bp $133-134^{\circ} \mathrm{C} / 3 \mathrm{mmHg}$; ir: 3325 (NH), and $1641(\mathrm{C}=\mathrm{C}) \mathrm{cm}^{-1} ;{ }^{1} \mathrm{H} \mathrm{nmr}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 1.87$ (brs, $1 \mathrm{H}, \mathrm{NH}$), 2.51 (brt, 2H, $J=6.7 \mathrm{~Hz}, \mathrm{H}-3$), 3.60 (d, $1 \mathrm{H}, J=14.7 \mathrm{~Hz}$, $\left.\mathrm{NCH}_{2}-\mathrm{A}\right), 3.75\left(\mathrm{~d}, 1 \mathrm{H}, J=14.7 \mathrm{~Hz}, \mathrm{NCH}_{2}-\mathrm{B}\right), 3.77(\mathrm{t}, 1 \mathrm{H}, J=6.7$ $\mathrm{Hz}, \mathrm{H}-4), 5.07$ (m, 1H, J=1.2, $17.1 \mathrm{~Hz}, \mathrm{H}-1$ trans $), 5.11(\mathrm{~m}, 1 \mathrm{H}$, $J=1.2,10.1 \mathrm{~Hz}, \mathrm{H}-1$ cis), 5.70 (ddt, 1H, $J=6.7,10.1,17.1 \mathrm{~Hz}, \mathrm{H}-$ 2), 6.11 (dd, 1H, $\left.J=3.1,0.6 \mathrm{~Hz}, \mathrm{H}-\beta^{\prime}\right), 6.18$ (dd, $1 \mathrm{H}, J=3.4,0.6$ $\left.\mathrm{Hz}, \mathrm{H}-\beta^{\prime *}\right), 6.27$ (dd, $\left.1 \mathrm{H}, J=3.4,1.8 \mathrm{~Hz}, \mathrm{H}-\beta^{*}\right), 6.31$ (dd, 1 H , $J=3.1,1.8 \mathrm{~Hz}, \mathrm{H}-\beta$), 7.32 (dd, $\left.1 \mathrm{H}, J=1.8,0.6 \mathrm{~Hz}, \mathrm{H}-\alpha^{*}\right), 7.36$ (dd, $1 \mathrm{H}, J=1.8,0.6 \mathrm{~Hz}, \mathrm{H}-\alpha$).
Anal. Calcd. for $\mathrm{C}_{13} \mathrm{H}_{15} \mathrm{NO}_{2}$: C, $71.88 ; \mathrm{H}, 6.91 ; \mathrm{N}, 6.45$. Found: C, 71.98; H, 6.90; N, 6.44.

4- N-Furfurylamino-4-(3-pyridyl)butene-1 (10e).

Yield 34.2 g (50%); bp $139-141^{\circ} \mathrm{C} / 2 \mathrm{mmHg}$; ir: $3300(\mathrm{NH})$, and $1647(\mathrm{C}=\mathrm{C}) \mathrm{cm}^{-1} ;{ }^{1} \mathrm{H} \mathrm{nmr}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 1.99$ (brs, $1 \mathrm{H}, \mathrm{NH}$), 2.39 (dd, 2H, $J=6.8,7.0 \mathrm{~Hz}, \mathrm{H}-3$), 3.50 (d, $1 \mathrm{H}, J=14.7$ $\mathrm{Hz}, \mathrm{NCH}_{2}-\mathrm{A}$), 3.67 ($\mathrm{d}, 1 \mathrm{H}, J=14.7 \mathrm{~Hz}, \mathrm{NCH}_{2}-\mathrm{B}$), $3.70(\mathrm{t}, 1 \mathrm{H}$, $J=6.8 \mathrm{~Hz}, \mathrm{H}-4), 5.02$ (m, 1H, J=1.3, $9.5 \mathrm{~Hz}, \mathrm{H}-1$ cis), 5.09 (dd, $1 \mathrm{H}, J=1.3,17.4 \mathrm{~Hz}, \mathrm{H}-1$ trans $), 5.66$ ($\mathrm{m}, 1 \mathrm{H}, J=6.7,9.5,17.4 \mathrm{~Hz}$, H-2), 6.06 (dd, 1H, $J=3.2,0.8 \mathrm{~Hz}, \mathrm{H}^{\prime} \beta^{\prime}$), 7.25 (brdd, $1 \mathrm{H}, J=4.8$, $\left.7.9 \mathrm{~Hz}, \mathrm{H}-5^{*}\right), 6.27(\mathrm{dd}, 1 \mathrm{H}, J=3.2,1.9 \mathrm{~Hz}, \mathrm{H}-\beta), 7.33(\mathrm{dd}, 1 \mathrm{H}$,
$J=1.9,0.8 \mathrm{~Hz}, \mathrm{H}-\alpha), 7.70\left(\mathrm{dt}, 1 \mathrm{H}, J=1.8,7.9 \mathrm{~Hz}, \mathrm{H}-4^{*}\right), 8.50$ (d, $\left.1 \mathrm{H}, J=4.8 \mathrm{~Hz}, \mathrm{H}-6^{*}\right), 8.54\left(\mathrm{~d}, 1 \mathrm{H}, J=1.8 \mathrm{~Hz}, \mathrm{H}-2^{*}\right)$.

Anal. Calcd. for $\mathrm{C}_{14} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}: \mathrm{C}, 73.68 ; \mathrm{H}, 7.01 ; \mathrm{N}, 12.28$. Found: C, 73.65; H, 7.14; N, 12.39.

3-(1-Allylcyclohexyl)-10-oxa-3-azatricyclo[5.2.1.0 ${ }^{1,5}$]dec-8-en-4-on (14a).

Acrylic anhydride 6.60 mL (57.0 mmol) was added to a solution of $2.50 \mathrm{~g}(11.4 \mathrm{mmol})$ of allylamine $\mathbf{1 0 f}$ in o-xylene (15 mL). The mixture was refluxed for 5 h (TLC monitoring). Then the reaction mass was poured into $\mathrm{H}_{2} \mathrm{O}(150 \mathrm{~mL})$ and concentrated $\mathrm{Na}_{2} \mathrm{CO}_{3}$ solution was added until $\mathrm{pH} 10-11$. The solution was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 70 \mathrm{~mL})$, combined organic layers were dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated in vacuo. The crude product was purified by column chromatography on $\mathrm{Al}_{2} \mathrm{O}_{3}(25 \times$ 2 cm , using hexane/ethyl acetate, $30: 1$ as eluent). Compound 14a: white acicular crystals; yield $1.20 \mathrm{~g}(4.40 \mathrm{mmol}, 40 \%)$; mp $95{ }^{\circ} \mathrm{C}$ (hexane-ethyl acetate); $R_{\mathrm{f}} 0.25$ (hexane-ethyl acetate, 1:1); ir: $1667(\mathrm{~N}-\mathrm{C}=\mathrm{O})$, and $1627(\mathrm{C}=\mathrm{C}) \mathrm{cm}^{-1} ; \mathrm{ms}: \mathrm{m} / \mathrm{z} \mathrm{M} ~ 273$ (2), 261 (3), 232 (17), 220 (3), 204 (2), 178 (3), 161 (2), 140 (3), 121 (4), 107 (2), 91 (2), 82 (8), 81 (100), 67 (5), 55 (10), 53 (9), 41 (11); ${ }^{1} \mathrm{H} \mathrm{nmr}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 1.31-1.61(\mathrm{~m}, 8 \mathrm{H}$, $\left.\left(\mathrm{CH}_{2}\right)_{4}\right), 1.51\left(\mathrm{dd},{ }^{3} J=8.7,{ }^{2} J=11.8 \mathrm{~Hz}, \mathrm{H}-6\right.$ endo $), 2.14(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-$ o-cyclohexyl), 2.16 (ddd, $1 \mathrm{H},{ }^{3} J=3.3,4.5,{ }^{2} J=11.8 \mathrm{~Hz}, \mathrm{H}-6$ exo), 2.35 (brd, 1H, H-o-cyclohexyl), 2.42 (dd, $1 \mathrm{H},{ }^{3} \mathrm{~J}=3.3,8.7 \mathrm{~Hz}, \mathrm{H}-$ 5endo), 2.49 (dd, $\left.1 \mathrm{H},{ }^{3} J=8.1,{ }^{2} J=13.9 \mathrm{~Hz}, \mathrm{H}-3^{\prime} \mathrm{B}\right), 2.54(\mathrm{dd}, 1 \mathrm{H}$, $\left.{ }^{3} J=7.2,{ }^{2} J=13.9 \mathrm{~Hz}, \mathrm{H}-3^{\prime} \mathrm{A}\right), 3.87\left(\mathrm{~d}, 1 \mathrm{H},{ }^{2} J=11.7 \mathrm{~Hz}, \mathrm{H}-2 \mathrm{~B}\right)$, 3.96 (d, 1H, $\left.{ }^{2} J=11.7 \mathrm{~Hz}, \mathrm{H}-2 \mathrm{~A}\right), 5.03$ (d, $1 \mathrm{H},{ }^{3} J=4.5 \mathrm{~Hz}, \mathrm{H}-7$), $5.02-5.08$ ($\mathrm{m}, 2 \mathrm{H}, \mathrm{H}-1^{\prime}$), 5.81 (dddd, $1 \mathrm{H},{ }^{3} J=7.2,8.1,9.4,17.3$ $\left.\mathrm{Hz}, \mathrm{H}-2^{\prime}\right), 6.36$ ($\mathrm{m}, 2 \mathrm{H}, \mathrm{H}-8$ and $\mathrm{H}-9$).

Anal. Calcd. for $\mathrm{C}_{17} \mathrm{H}_{23} \mathrm{NO}_{2}$: C, 74.72; $\mathrm{H}, 8.42 ; \mathrm{N}, 5.12$. Found: C, 74.75; H, 8.37; N, 5.14.
3-(1-Allylcyclohexyl)-10-oxa-3-azatricyclo[5.2.1.0 ${ }^{1,5}$]dec-8-en-4-on-6-carboxylic acid (14b).

Amine $10 \mathrm{f} 2.10 \mathrm{~g}(9.58 \mathrm{mmol})$ was dissolved in 15 mL of benzene. Then an equimolar amount of maleic anhydride 0.94 g (9.58 mmol) was added in one portion to the obtained solution. The reaction mixture was stirred for 2 d at room temperature. Then the crystalline product was collected by filtration, washed with benzene $(2 \times 10 \mathrm{~mL})$, ether $(2 \times 10 \mathrm{~mL})$ and dried at 100 ${ }^{\circ} \mathrm{C}$ to give desired product $\mathbf{1 4 b}$ as white powder. Yield 1.82 g ($5.75 \mathrm{mmol}, 60 \%$); $\mathrm{mp} 87-110^{\circ} \mathrm{C}$ with decomposition; ir: 1667 (C=O), $2980(\mathrm{OH})$, and $1627(\mathrm{C}=\mathrm{C}) \mathrm{cm}^{-1} ; \mathrm{ms}: \mathrm{m} / \mathrm{z}[\mathrm{M}-41]^{+} 273$ (1), 261 (3), 232 (3), 204 (3), 178 (2), 176 (2), 140 (6), 121 (7), 98 (4), 94 (3), 91 (3), 82 (6), 81 (100), 79 (7), 77 (5), 67 (5), 55 (10), 53 (12), 43 (14), 41 (13); ${ }^{1} \mathrm{H} \mathrm{nmr}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta$ $1.30-1.85\left(\mathrm{~m}, 8 \mathrm{H},\left(\mathrm{CH}_{2}\right)_{4}\right), 2.10-2.30(\mathrm{~m}, 2 \mathrm{H}), 2.53(\mathrm{~d}, 2 \mathrm{H}$, $\left.{ }^{3} J=7.6 \mathrm{~Hz}, \mathrm{H}-3^{\prime}\right), 2.83\left(\mathrm{~d}, 1 \mathrm{H},{ }^{3} \mathrm{~J}=9.2 \mathrm{~Hz}, \mathrm{H}-6\right), 2.88(\mathrm{~d}, 1 \mathrm{H}$, $\left.{ }^{3} J=9.2 \mathrm{~Hz}, \mathrm{H}-5\right), 3.92\left(\mathrm{~d}, 1 \mathrm{H},{ }^{2} J=12.2 \mathrm{~Hz}, \mathrm{H}-2 \mathrm{~B}\right), 4.00(\mathrm{~d}, 1 \mathrm{H}$, ${ }^{2} J=12.2 \mathrm{~Hz}, \mathrm{H}-2 \mathrm{~A}$), 5.07 (brd, $1 \mathrm{H},{ }^{3} J=16.2 \mathrm{~Hz}, \mathrm{H}-1$ 'trans), 5.09 (brd, $1 \mathrm{H},{ }^{3} J=10.7 \mathrm{~Hz}, \mathrm{H}-1$ 'cis), 5.42 (brs, $1 \mathrm{H},{ }^{3} \mathrm{~J}=1.5 \mathrm{~Hz}, \mathrm{H}-7$), $5.81\left(\mathrm{~m}, 1 \mathrm{H},{ }^{3} J=7.6,10.7,16.2 \mathrm{~Hz}, \mathrm{H}-2^{\prime}\right), 6.41\left(\mathrm{~d}, 1 \mathrm{H},{ }^{3} \mathrm{~J}=5.8\right.$ $\mathrm{Hz}, \mathrm{H}-9), 6.52$ (dd, $\left.1 \mathrm{H},{ }^{3} J=1.5,5.8 \mathrm{~Hz}, \mathrm{H}-8\right)$.

Anal. Calcd. for $\mathrm{C}_{18} \mathrm{H}_{23} \mathrm{NO}_{4}$: C, 68.13; $\mathrm{H}, 7.25 ; \mathrm{N}, 4.41$. Found: C, 68.30; H, 7.18; N, 4.45.

Dimethyl (E)-2-[(1-(2-furyl)-3-butenyl)furfurylamino]-2-butenedioate (16).

DMAD $1.13 \mathrm{~mL}(9.21 \mathrm{mmol})$ was added to a solution of 2.0 g (9.21 mmol) of allylamine $\mathbf{1 0 d}$ in toluene (10 mL). The mass was
feebly getting warm and dark. The reaction mixture was stirred for 4 h at room temperature (TLC monitoring). Then toluene was stripped in vacuo. Compound 16: brown oil, yield $3.25 \mathrm{~g}(9.05$ mmol, 98%); $R_{\mathrm{f}} 0.31$ (hexane-ethyl acetate, 3 : 1); ir: 1733 ($\mathrm{O}-\mathrm{C}=\mathrm{O}$), and $1680(\mathrm{C}=\mathrm{C}) \mathrm{cm}^{-1}$; $\mathrm{ms}: \mathrm{m} / \mathrm{z} \mathrm{M}^{+} 359$ (9), 318 (5), 286 (5), 238 (17), 208 (4), 179 (6), 178 (11), 146 (5), 121 (26), 103 (17), 93 (11), 91 (15), 82 (6), 81 (100), 77 (14), 53 (15); ${ }^{1} \mathrm{H}$ $\mathrm{nmr}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 2.71(\mathrm{~m}, 2 \mathrm{H}, 2 \mathrm{H}-3), 3.62(\mathrm{~s}, 3 \mathrm{H}$, $\left.\mathrm{CO}_{2} \mathrm{Me}\right), 3.94\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CO}_{2} \mathrm{Me}\right), 4.13\left(\mathrm{~d}, 1 \mathrm{H},{ }^{2} \mathrm{~J}=16.9 \mathrm{~Hz}, \mathrm{NCH}_{2}-\right.$ A), $4.20\left(\mathrm{~d}, 1 \mathrm{H},{ }^{2} J=16.9 \mathrm{~Hz}, \mathrm{NCH}_{2}-\mathrm{B}\right), 4.56\left(\mathrm{t}, 1 \mathrm{H},{ }^{3} J=7.5 \mathrm{~Hz}, \mathrm{H}-\right.$ 4), $4.89(\mathrm{~s}, 1 \mathrm{H}, \mathrm{E}-\mathrm{CH}=\mathrm{C}), 5.06\left(\mathrm{~m}, 1 \mathrm{H},{ }^{3} \mathrm{~J}=10.3,{ }^{2} \mathrm{~J}=1.5 \mathrm{~Hz}, \mathrm{H}-\right.$ 1 cis), 5.09 (m, 1H, ${ }^{3} J=17.1,{ }^{2} J=1.5 \mathrm{~Hz}, \mathrm{H}-1$ trans), 5.71 (ddt, 1H, $\left.{ }^{3} J=10.3,17.1,7.0 \mathrm{~Hz}, \mathrm{H}-2\right), 6.03\left(\mathrm{dd}, 1 \mathrm{H},{ }^{3} J=3.2,{ }^{4} J=0.8 \mathrm{~Hz}, \mathrm{H}-\right.$ β^{*}), $6.24\left(\mathrm{dd}, 1 \mathrm{H},{ }^{3} J=3.2,{ }^{4} J=1.8 \mathrm{~Hz}, \mathrm{H}-\beta^{*}\right), 6.31\left(\mathrm{dt}, 1 \mathrm{H},{ }^{3} J=3.2\right.$, $\left.0.8 \mathrm{~Hz}, \mathrm{H}-\beta^{\prime}\right), 6.33$ (dd, $1 \mathrm{H},{ }^{3} J=3.2,1.8 \mathrm{~Hz}, \mathrm{H}-\beta$), 7.28 (dd, 1 H , $\left.{ }^{3} J=1.7,{ }^{4} J=0.8 \mathrm{~Hz}, \mathrm{H}-\alpha^{*}\right), 7.38\left(\mathrm{dd}, 1 \mathrm{H},{ }^{3} J=1.7,{ }^{4} J=0.8 \mathrm{~Hz}, \mathrm{H}-\alpha\right)$.

Anal. Calcd. for $\mathrm{C}_{19} \mathrm{H}_{21} \mathrm{NO}_{6}$: C, $63.50 ; \mathrm{H}, 5.84 ; \mathrm{N}, 3.89$. Found: C, 63.65; H, 5.70; N, 3.80.

Dimethyl (E)-2-[4-(2-furyl)-11-oxa-3-azatricyclo[6.2.1.0 ${ }^{1,6}$]-undec-9-en-3-yl]-2-butenedioate (17).

Procedure A. DMAD $1.1 \mathrm{~mL}(9.20 \mathrm{mmol})$ was added to a solution of $2.0 \mathrm{~g}(9.20 \mathrm{mmol})$ allylamine $\mathbf{1 0 d}$ in toluene (10 mL). The resulting mixture was refluxed for 15 h (TLC monitoring). After removal of toluene, the crude product was purified by column chromatography on $\mathrm{Al}_{2} \mathrm{O}_{3}(4 \times 17 \mathrm{~cm}$, using hexane/ethyl acetate, $10: 1$ as eluent). Yield (17) 0.6 g (2.20 mmol, 24\%).

Procedure B. The solution of $2.20 \mathrm{~g}(6.13 \mathrm{mmol})$ compound 16 in toluene (15 mL) was refluxed for 8 h . After removal of toluene, the crude product was purified by column chromatography on $\mathrm{Al}_{2} \mathrm{O}_{3}(3 \times 15 \mathrm{~cm}$, eluent hexane/ethyl acetate, $10: 1$). Yield (17) $0.99 \mathrm{~g}(2.75 \mathrm{mmol}, 45 \%)$.

Compound 17: white needles, mp $117-118.5{ }^{\circ} \mathrm{C}$ (ethyl acetate-hexane); $R_{\mathrm{f}} 0.24$ (ethyl acetate-hexane, $1: 1$); ir: 1726 (O-C=O), and $1680(\mathrm{C}=\mathrm{C}) \mathrm{cm}^{-1}$; $\mathrm{ms}: \mathrm{m} / \mathrm{z} \mathrm{M}^{+} 359$ (29), 328 (9), 300 (26), 286 (32), 282 (8), 268 (11), 178 (13), 121 (8), 103 (10), 94 (45), 91 (23), 82 (7), 81 (100), 77 (21), 65 (9), 53 (22); ${ }^{1} \mathrm{H} \mathrm{nmr}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 1.42-1.66(\mathrm{~m}, 3 \mathrm{H}, \mathrm{H}-6$ and $\mathrm{H}-7)$, 1.86 (dt, $1 \mathrm{H},{ }^{2} J=13.6,{ }^{3} J=11.0 \mathrm{~Hz}, \mathrm{H}-5 \mathrm{ax}$), 2.34 (ddd, 1 H , $\left.{ }^{2} J=13.6,{ }^{3} J=7.0,3.0 \mathrm{~Hz}, \mathrm{H}-5 e q v\right), 3.61\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CO}_{2} \mathrm{Me}\right), 3.71$ (d, $\left.1 \mathrm{H},{ }^{2} J=15.1 \mathrm{~Hz}, \mathrm{H}-2 \mathrm{~B}\right), 3.83\left(\mathrm{~d}, 1 \mathrm{H},{ }^{2} J=15.1 \mathrm{~Hz}, \mathrm{H}-2 \mathrm{~A}\right), 3.96$ (s, $\left.3 \mathrm{H}, \mathrm{CO}_{2} \mathrm{Me}\right), 4.57\left(\mathrm{~d}, 1 \mathrm{H},{ }^{3} J=7.0,11.0 \mathrm{~Hz}, \mathrm{H}-4 \mathrm{ax}\right), 4.85(\mathrm{~s}, 1 \mathrm{H}$, $\mathrm{E}-\mathrm{CH}=\mathrm{CE}), 4.91$ (dd, $\left.1 \mathrm{H},{ }^{3} \mathrm{~J}=4.4,1.7 \mathrm{~Hz}, \mathrm{H}-8\right), 6.23$ (dd, 1 H , $\left.{ }^{3} J=3.2,{ }^{4} J=0.8 \mathrm{~Hz}, \mathrm{H}-\beta^{\prime}\right), 6.32\left(\mathrm{dd}, 1 \mathrm{H},{ }^{3} J=3.2,1.8 \mathrm{~Hz}, \mathrm{H}-\beta\right)$, $6.30\left(\mathrm{dd}, 1 \mathrm{H},{ }^{3} J=5.8,1.4 \mathrm{~Hz}, \mathrm{H}-9\right), 6.50\left(\mathrm{~d}, 1 \mathrm{H},{ }^{3} J=5.8 \mathrm{~Hz}, \mathrm{H}-\right.$ 10), 7.36 (dd, $\left.1 \mathrm{H},{ }^{3} J=1.8,{ }^{4} J=0.8 \mathrm{~Hz}, \mathrm{H}-\alpha\right)$.

Anal. Calcd. for $\mathrm{C}_{19} \mathrm{H}_{21} \mathrm{NO}_{6}$: C, 63.50; $\mathrm{H}, 5.84 ; \mathrm{N}, 3.89$. Found: C, 63.68; H, 6.03; N, 3.94.

2-Allyl-3-(2-furylmethyl)-4-oxo-10-oxa-3-azatricyclo[5.2.1.0 ${ }^{1,5}$]-dec-8-ene-6-carboxylic acid (20).

Amine $10 \mathrm{~d} 3.0 \mathrm{~g}(13.8 \mathrm{mmol})$ was added to a solution of 1.36 $\mathrm{g}(13.8 \mathrm{mmol})$ of maleic anhydride in benzene $(25 \mathrm{~mL})$. The reaction mixture was stirred at $0-5{ }^{\circ} \mathrm{C}$ for 2 h . Then the crystalline product was collected by filtration, washed with benzene $(2 \times 30 \mathrm{~mL})$, ether $(30 \mathrm{~mL})$ and dried in air to give desired product 20. Compound 20: 3.01 g ($9.66 \mathrm{mmol}, 70 \%$) white powder, mixture of isomers in the $\sim 1: 6$ ratio; mp $132-133.5^{\circ} \mathrm{C}$; ir: $3360(\mathrm{OH}), 1708(\mathrm{~N}-\mathrm{C}=\mathrm{O})$, and $1684(\mathrm{C}=\mathrm{C})$ $\mathrm{cm}^{-1} ; \mathrm{ms}: \mathrm{m} / \mathrm{z} \mathrm{M}^{+} 315$ (5), 274 (5), 234 (4), 194 (53), 176 (15),

121 (9), 98 (17), 96 (62), 91 (12), 81 (100), 78 (21), 77 (17), 65 (13), 53 (42), 41 (14), 39 (25); 20 (maj): ${ }^{1} \mathrm{H}$ nmr (DMSO, 400 $\mathrm{MHz}) \delta 2.47\left(\mathrm{~d}, 1 \mathrm{H},{ }^{3} \mathrm{~J}=9.3 \mathrm{~Hz}, \mathrm{H}-5\right), 2.52-2.62\left(\mathrm{~m}, 2 \mathrm{H}, 2 \mathrm{H}-3^{\prime}\right)$, 2.79 (d, 1H, $\left.{ }^{3} J=9.3 \mathrm{~Hz}, \mathrm{H}-6\right), 3.79$ (dd, $\left.1 \mathrm{H},{ }^{3} J=6.4,3.8 \mathrm{~Hz}, \mathrm{H}-2\right)$, $4.29\left(\mathrm{~d}, 1 \mathrm{H},{ }^{2} \mathrm{~J}=16.1 \mathrm{~Hz}, \mathrm{NCH}_{2}-\mathrm{B}\right), 4.58\left(\mathrm{~d}, 1 \mathrm{H},{ }^{2} J=16.1 \mathrm{~Hz}\right.$, $\left.\mathrm{NCH}_{2}-\mathrm{A}\right), 4.95\left(\mathrm{~d}, 1 \mathrm{H},{ }^{3} J=1.7 \mathrm{~Hz}, \mathrm{H}-7\right), 5.11$ (dd, $1 \mathrm{H},{ }^{3} J=10.2$, ${ }^{2} J=1.8 \mathrm{~Hz}, \mathrm{H}-1^{\prime}$ cis), 5.18 (dd, $1 \mathrm{H},{ }^{3} J=17.2,{ }^{2} J=1.8 \mathrm{~Hz}, \mathrm{H}-$ 1^{\prime} trans), $5.75\left(\mathrm{~m}, 1 \mathrm{H},{ }^{3} J=17.2,10.2,7.0 \mathrm{~Hz}, \mathrm{H}-2^{\prime}\right), 6.31$ (brdd, $\left.1 \mathrm{H},{ }^{3} J=3.2,{ }^{4} J=0.8 \mathrm{~Hz}, \mathrm{H}-\beta^{\prime}\right), 6.38\left(\mathrm{dd}, 1 \mathrm{H},{ }^{3} J=3.2,1.8 \mathrm{~Hz}, \mathrm{H}-\beta\right)$, $6.44\left(\mathrm{dd}, 1 \mathrm{H},{ }^{3} J=5.8,1.7 \mathrm{~Hz}, \mathrm{H}-8\right), 6.65\left(\mathrm{~d}, 1 \mathrm{H},{ }^{3} J=5.8 \mathrm{~Hz}, \mathrm{H}-9\right)$, 7.57 (dd, $1 \mathrm{H},{ }^{3} J=1.8,{ }^{4} J=0.8 \mathrm{~Hz}, \mathrm{H}-\alpha$), 12.15 (brs, $1 \mathrm{H}, \mathrm{CO}_{2} \mathrm{H}$); 20 (min): $\delta 2.48$ (d, 1H, $\left.{ }^{3} J=9.3 \mathrm{~Hz}, \mathrm{H}-5\right), 2.52-2.62(\mathrm{~m}, 2 \mathrm{H}, 2 \mathrm{H}-$ $\left.3^{\prime}\right), 2.77\left(\mathrm{~d}, 1 \mathrm{H},{ }^{3} \mathrm{~J}=9.3 \mathrm{~Hz}, \mathrm{H}-6\right), 3.97\left(\mathrm{dd}, 1 \mathrm{H},{ }^{3} J=10.5,4.5 \mathrm{~Hz}\right.$, $\mathrm{H}-2), 4.12\left(\mathrm{~d}, 1 \mathrm{H},{ }^{2} \mathrm{~J}=16.1 \mathrm{~Hz}, \mathrm{NCH}_{2}-\mathrm{B}\right), 4.72\left(\mathrm{~d}, 1 \mathrm{H},{ }^{2} J=16.1\right.$ $\left.\mathrm{Hz}, \mathrm{NCH}_{2}-\mathrm{A}\right), 5.01\left(\mathrm{~d}, 1 \mathrm{H},{ }^{3} \mathrm{~J}=1.8 \mathrm{~Hz}, \mathrm{H}-7\right), 5.02$ (brd, 1 H , ${ }^{3} J \sim 10.0 \mathrm{~Hz}, \mathrm{H}-1^{\prime}$ cis), 5.11 (brd, $1 \mathrm{H},{ }^{3} \mathrm{~J} \sim 17.0 \mathrm{~Hz}, \mathrm{H}-1^{\prime}$ trans), 5.75 (m, 1H, H-2'), 6.31 (brdd, $\left.1 \mathrm{H},{ }^{3} J=3.2,{ }^{4} J=0.8 \mathrm{~Hz}, \mathrm{H}-\beta^{\prime}\right), 6.34$ (brdd, $\left.1 \mathrm{H},{ }^{3} J=5.7,1.8 \mathrm{~Hz}, \mathrm{H}-8\right), 6.41$ (dd, $1 \mathrm{H},{ }^{3} J=3.2,1.9 \mathrm{~Hz}, \mathrm{H}-$ β), $6.47\left(\mathrm{dd}, 1 \mathrm{H},{ }^{3} J=5.7 \mathrm{~Hz}, \mathrm{H}-9\right), 7.59\left(\mathrm{~m}, 1 \mathrm{H},{ }^{3} J=1.9,0.8 \mathrm{~Hz}\right.$, $\mathrm{H}-\alpha), 12.15$ (brs, $1 \mathrm{H}, \mathrm{CO}_{2} \mathrm{H}$).

Anal. Calcd. for $\mathrm{C}_{17} \mathrm{H}_{17} \mathrm{NO}_{5}$: C, 64.76; $\mathrm{H}, 5.39 ; \mathrm{N}, 4.40$. Found: C, 64.80; H, 5.42; N, 4.37.

4- N-Furfurylamino- N-acryloyl-4-(2-furyl)butene-1 (21).

Triethylamine $4.09 \mathrm{~mL}(29.30 \mathrm{mmol})$ and acryloyl chloride $1.99 \mathrm{~mL}(24.40 \mathrm{mmol})$ were added to a solution of allylamine $\mathbf{1 0 d}(2.12 \mathrm{~g}, 9.76 \mathrm{mmol})$ in 20 mL of toluene. The reaction mass was feebly getting warm and white triethylamine hydrochloride precipitated. The mixture was stirred for 5 h at room temperature (TLC monitoring), diluted with $\mathrm{H}_{2} \mathrm{O}(100 \mathrm{~mL})$ and a solution of $\mathrm{Na}_{2} \mathrm{CO}_{3}$ was added until $\mathrm{pH} 9-10$. The organic products were extracted with $\mathrm{CHCl}_{3}(4 \times 50 \mathrm{~mL})$, combined organic layers were washed with saturated $\mathrm{Na}_{2} \mathrm{CO}_{3}$ solution $(2 \times 50 \mathrm{~mL})$, dried over MgSO_{4} and concentrated. The column chromatography on $\mathrm{Al}_{2} \mathrm{O}_{3}(15 \times 1.5 \mathrm{~cm}$, using ethyl acetate/hexane, $1: 5$ as eluent $)$ gave compound $212.50 \mathrm{~g}(9.00 \mathrm{mmol})$ contaminated with about 5-7 percent of tricycle 22 (according to NMR). Mobile yellow oil, yield 93%; $R_{\mathrm{f}} 0.71$ (ethyl acetate-hexane, $1: 1$); ir: 1665 $(\mathrm{C}=\mathrm{O}$, and $\mathrm{C}=\mathrm{C}) \mathrm{cm}^{-1} ;{ }^{1} \mathrm{H} \mathrm{nmr}(\mathrm{DMSO}, 400 \mathrm{MHz}) \delta 2.60(\mathrm{~m}$, $\left.2 \mathrm{H},{ }^{3} \mathrm{~J}=6.7,7.6,8.6 \mathrm{~Hz}, \mathrm{H}-3\right) ; 3.35\left(\mathrm{~d}, 1 \mathrm{H},{ }^{2} \mathrm{~J}=14.7 \mathrm{~Hz}, \mathrm{NCH}_{2}-\right.$ B), $3.80\left(\mathrm{~d}, 1 \mathrm{H},{ }^{2} \mathrm{~J}=14.7 \mathrm{~Hz}, \mathrm{NCH}_{2}-\mathrm{A}\right), 5.12\left(\mathrm{~m}, 1 \mathrm{H},{ }^{3} \mathrm{~J}=10.1\right.$, ${ }^{2} J=1.8 \mathrm{~Hz}, \mathrm{H}-1$ cis $), 5.20\left(\mathrm{~m}, 1 \mathrm{H},{ }^{3} J=17.1,{ }^{2} J=1.8 \mathrm{~Hz}, \mathrm{H}-1\right.$ trans $)$, 5.48 (dd, $1 \mathrm{H},{ }^{3} J=10.3,{ }^{2} J=2.0 \mathrm{~Hz}, \mathrm{H}-1^{\prime}$ cis), $5.78\left(\mathrm{~m}, 1 \mathrm{H},{ }^{3} J=10.1\right.$, $17.1,7.6 \mathrm{~Hz}, \mathrm{H}-2), 5.81$ (dd, $1 \mathrm{H},{ }^{3} \mathrm{~J}=10.3,16.8 \mathrm{~Hz}, \mathrm{H}-2^{\prime}$), 6.14 (brd, $1 \mathrm{H},{ }^{3} J=3.2 \mathrm{~Hz}, \mathrm{H}-\beta^{\prime *}$), 6.19 (brd, $\left.1 \mathrm{H},{ }^{3} J=3.2 \mathrm{~Hz}, \mathrm{H}-\beta^{\prime}\right)$, 6.31 (dd, $\left.1 \mathrm{H},{ }^{3} J=3.2,{ }^{4} J=1.8 \mathrm{~Hz}, \mathrm{H}-\beta^{*}\right), 6.33\left(\mathrm{dd}, 1 \mathrm{H},{ }^{3} J=3.2,1.8\right.$ $\mathrm{Hz}, \mathrm{H}-\beta$), 6.39 (dd, $1 \mathrm{H},{ }^{3} J=16.8,{ }^{2} J=2.1 \mathrm{~Hz}, \mathrm{H}-1^{\prime}$ trans), 6.43 (dd, $\left.1 \mathrm{H},{ }^{3} J=8.6,6.7 \mathrm{~Hz}, \mathrm{H}-4\right), 7.37\left(\mathrm{dd}, 1 \mathrm{H},{ }^{3} J=1.8,{ }^{4} J=0.8 \mathrm{~Hz}, \mathrm{H}-\right.$ $\left.\alpha^{*}\right), 7.39\left(\mathrm{dd}, 1 \mathrm{H},{ }^{3} J=1.8,{ }^{4} J=0.8 \mathrm{~Hz}, \mathrm{H}-\alpha\right)$.

Anal. Calcd. for $\mathrm{C}_{16} \mathrm{H}_{17} \mathrm{NO}_{3}: \mathrm{C}, 68.32 ; \mathrm{H}, 6.04 ; \mathrm{N}, 4.98$. Found: C, 68.20; H, 6.09; N, 5.02.

3-(2-Furylmethyl)-2-allyl-10-oxa-3-azatricyclo[5.2.1.0 ${ }^{1,5}$]dec-8-en-4-one (22).

Triethylamine ($4.1 \mathrm{~mL}, 29.30 \mathrm{mmol}$) and acryloyl chloride $(2.0 \mathrm{~mL}, 24.40 \mathrm{mmol})$ were added to a solution of allylamine $10 \mathrm{~d} 2.12 \mathrm{~g}(9.76 \mathrm{mmol})$ in toluene $(20 \mathrm{~mL})$. The reaction mass was feebly getting warm and white triethylamine hydrochloride precipitates. The mixture was refluxed for 3 h (TLC monitoring), then diluted with $\mathrm{H}_{2} \mathrm{O}(100 \mathrm{~mL})$ and a solution of $\mathrm{Na}_{2} \mathrm{CO}_{3}$ was added until $\mathrm{pH} 9-10$. The organic
products were extracted with $\mathrm{CHCl}_{3}(4 \times 50 \mathrm{~mL})$. The combined organic layers were washed with saturated $\mathrm{Na}_{2} \mathrm{CO}_{3}$ solution ($2 \times 50 \mathrm{~mL}$), dried over MgSO_{4} and concentrated. The column chromatography on $\mathrm{Al}_{2} \mathrm{O}_{3}(22 \times 2 \mathrm{~cm}$, using ethyl acetate/hexane, $1: 5$ as eluent) gave tricycle 221.75 g (6.24 mmol). Viscous pale yellow oil, yield 64%; mixture of diastereoisomers in the $\sim 1: 2$ ratio; $R_{\mathrm{f}} 0.32$ (ethyl acetatehexane, 1:1); ir: $1686(\mathrm{C}=\mathrm{O}$ and $\mathrm{C}=\mathrm{C}) \mathrm{cm}^{-1} ; \mathrm{ms}: \mathrm{m} / \mathrm{z} \mathrm{M}^{+} 281$ (4), 240 (8), 216 (59), 160 (18), 121 (9), 98 (17), 96 (15), 81 (100), 77 (9), 53 (21), 41 (14); ${ }^{1} \mathrm{H} \mathrm{nmr}$ (DMSO, 400 MHz$) 22$ (maj): $\delta 1.43$ (m, 1H, H-6), $1.84(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-6), 2.40(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-$ 5), $2.60\left(\mathrm{~m}, 2 \mathrm{H},{ }^{3} J=3.9,6.5,7.6 \mathrm{~Hz}, \mathrm{H}-3^{\prime}\right), 3.73\left(\mathrm{~d}, 1 \mathrm{H},{ }^{3} J=6.5\right.$, $3.9 \mathrm{~Hz}, \mathrm{H}-2), 4.27\left(\mathrm{~d}, 1 \mathrm{H},{ }^{2} J=15.8 \mathrm{~Hz}, \mathrm{NCH}_{2}-\mathrm{B}\right), 4.63(\mathrm{~d}, 1 \mathrm{H}$, $\left.{ }^{2} J=15.8 \mathrm{~Hz}, \mathrm{NCH}_{2}-\mathrm{A}\right), 4.95\left(\mathrm{dd}, 1 \mathrm{H},{ }^{3} J=4.4,1.7 \mathrm{~Hz}, \mathrm{H}-7\right), 5.11$ ($\mathrm{m}, 1 \mathrm{H},{ }^{3} J=10.7,{ }^{2} J=1.6 \mathrm{~Hz}, \mathrm{H}-1^{\prime}$ cis), 5.19 (dd, $1 \mathrm{H},{ }^{3} J=17.1$, ${ }^{2} J=1.6 \mathrm{~Hz}, \mathrm{H}-1^{\prime}$ trans), 6.19 (brd, $\left.1 \mathrm{H},{ }^{3} J=3.2 \mathrm{~Hz}, \mathrm{H}-\beta^{\prime}\right)$, $5.70-5.83\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-2^{\prime}\right), 6.33\left(\mathrm{dd}, 1 \mathrm{H},{ }^{3} \mathrm{~J}=3.2,1.8 \mathrm{~Hz}, \mathrm{H}-\beta\right.$), 6.39 (dd, $\left.1 \mathrm{H},{ }^{3} J=5.9,1.7 \mathrm{~Hz}, \mathrm{H}-8\right), 6.47$ (dd, $1 \mathrm{H},{ }^{3} J=5.9 \mathrm{~Hz}, \mathrm{H}-$ 9), 7.58 (dd, $1 \mathrm{H},{ }^{3} J=1.8,{ }^{4} J=0.8 \mathrm{~Hz}, \mathrm{H}-\alpha$); 22 (min): 1.43 (m, $1 \mathrm{H}, \mathrm{H}-6 \mathrm{~A}), 1.84(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-6 \mathrm{~B}), 2.40(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-5), 2.60(\mathrm{~m}$, $\left.2 \mathrm{H}, \mathrm{H}-3^{\prime}\right), 4.03$ (d, $\left.1 \mathrm{H},{ }^{3} \mathrm{~J}=10.4,4.4 \mathrm{~Hz}, \mathrm{H}-2\right), 4.11$ (d, 1 H , $\left.{ }^{2} J=16.2 \mathrm{~Hz}, \mathrm{NCH}_{2}-\mathrm{B}\right), 4.75\left(\mathrm{~d}, 1 \mathrm{H},{ }^{2} \mathrm{~J}=16.2 \mathrm{~Hz}, \mathrm{NCH}_{2}-\mathrm{A}\right), 4.99$ (dd, $\left.1 \mathrm{H},{ }^{3} J=4.3,1.7 \mathrm{~Hz}, \mathrm{H}-7\right), 5.12\left(\mathrm{~m}, 1 \mathrm{H},{ }^{3} J=10.1,{ }^{2} J=1.8 \mathrm{~Hz}\right.$, H-1'cis), $5.20\left(\mathrm{~m}, \quad 1 \mathrm{H},{ }^{3} J=17.1,{ }^{2} J=1.8 \mathrm{~Hz}, \mathrm{H}-\mathrm{l}^{\prime}\right.$ trans), $5.56-5.66$ (m, 1H, H-2'), 6.19 (brd, $\left.1 \mathrm{H},{ }^{3} J=3.2 \mathrm{~Hz}, \mathrm{H}-\beta^{\prime}\right), 6.33$ (dd, $1 \mathrm{H},{ }^{3} J=3.2,1.8 \mathrm{~Hz}, \mathrm{H}-\beta$), 6.39 (dd, $1 \mathrm{H},{ }^{3} J=5.9,1.7 \mathrm{~Hz}, \mathrm{H}-$ 8), 6.47 (dd, $1 \mathrm{H},{ }^{3} J=5.9 \mathrm{~Hz}, \mathrm{H}-9$), 7.62 (dd, $1 \mathrm{H},{ }^{3} J=1.8,{ }^{4} J=0.8$ $\mathrm{Hz}, \mathrm{H}-\alpha$).

Anal. Calcd. for $\mathrm{C}_{16} \mathrm{H}_{17} \mathrm{NO}_{3}$: C, $68.32 ; \mathrm{H}, 6.04 ; \mathrm{N}, 4.98$. Found: C, 68.27; H, 6.09; N, 5.00.

4- N-Furfurylamino- N-allyl-4-(2-furyl)butene-1 (23).

A solution of allylbromide ($4.0 \mathrm{~mL}, 46.0 \mathrm{mmol}$) in 10 mL of acetone was added dropwise to a stirred solution of homoallylamine $10 \mathrm{~d}(5.0 \mathrm{~g}, 23.0 \mathrm{mmol}), 8.50 \mathrm{~g}(46.0 \mathrm{mmol})$ of dry NaI and $9.5 \mathrm{~g}(69.0 \mathrm{mmol})$ of $\mathrm{K}_{2} \mathrm{CO}_{3}$ in 20 mL of acetone. The reaction mixture was stirred for 4 h at room temperature (TLC monitoring), taken up into $\mathrm{H}_{2} \mathrm{O}(100 \mathrm{~mL})$ and extracted with ether ($3 \times 70 \mathrm{~mL}$). Combined organic layers were washed with saturated $\mathrm{Na}_{2} \mathrm{CO}_{3}$ solution ($2 \times 50 \mathrm{~mL}$), dried over MgSO_{4} and evaporated in vacuo. The residue (dark-red oil) was purified by column chromatography on $\mathrm{Al}_{2} \mathrm{O}_{3}(4 \times 1.5 \mathrm{~cm}$, using hexane as eluent). Compound 23: pale yellow oil $4.55 \mathrm{~g}(17.70 \mathrm{mmol})$, yield $77 \% ; R_{\mathrm{f}} 0.58$ (ethyl acetate-hexane, 1:2); ir: 1640 (C=C) $\mathrm{cm}^{-1} ; \mathrm{ms}: \mathrm{m} / \mathrm{z} \mathrm{M}^{+} 257$ (4), 217 (10), 216 (59), 136 (18), 121 (4), 108 (6), 94 (5), 81 (100), 77 (5), 53 (8), 41 (6); ${ }^{1} \mathrm{H} \mathrm{nmr}$ $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 2.60\left(\mathrm{~m}, 2 \mathrm{H},{ }^{3} J=5.0,7.6 \mathrm{~Hz}, \mathrm{H}-3\right), 2.85$ (dd, $1 \mathrm{H},{ }^{2} J=14.1,{ }^{3} J=6.9 \mathrm{~Hz}, \mathrm{H}-3^{\prime} \mathrm{B}$), 3.32 (ddt, $1 \mathrm{H},{ }^{2} J=14.1$, $\left.{ }^{3} J=6.9,1.6 \mathrm{~Hz}, \mathrm{H}-3^{\prime} \mathrm{A}\right), 3.35\left(\mathrm{~d}, 1 \mathrm{H},{ }^{2} J=14.7 \mathrm{~Hz}, \mathrm{NCH}_{2}-\mathrm{A}\right)$, $3.80\left(\mathrm{~d}, 1 \mathrm{H},{ }^{2} J=14.7 \mathrm{~Hz}, \mathrm{NCH}_{2}-\mathrm{B}\right), 3.87\left(\mathrm{t}, 1 \mathrm{H},{ }^{3} J=7.6 \mathrm{~Hz}, \mathrm{H}-\right.$ 4), $4.96\left(\mathrm{~m}, 1 \mathrm{H},{ }^{3} J=10.1,{ }^{2} J=1.5 \mathrm{~Hz}, \mathrm{H}-1^{\prime} \mathrm{cis}\right), 5.02(\mathrm{~m}, 1 \mathrm{H}$, ${ }^{3} J=17.1,{ }^{2} J=1.5 \mathrm{~Hz}, \mathrm{H}-1^{\prime}$ trans $), 5.12\left(\mathrm{~m}, 1 \mathrm{H},{ }^{3} J=10.1,{ }^{2} J=1.8\right.$ $\mathrm{Hz}, \mathrm{H}-1$ cis $), 5.20\left(\mathrm{~m}, 1 \mathrm{H},{ }^{3} \mathrm{~J}=17.1,{ }^{2} \mathrm{~J}=1.8 \mathrm{~Hz}, \mathrm{H}-1\right.$ trans $), 5.73$ (ddt, $\left.1 \mathrm{H},{ }^{3} J=10.1,17.1,6.9 \mathrm{~Hz}, \mathrm{H}-2^{\prime}\right), 5.78\left(\mathrm{~m}, 1 \mathrm{H},{ }^{3} \mathrm{~J}=10.1\right.$, $17.1,7.6,5.0 \mathrm{~Hz}, \mathrm{H}-2$), 6.14 (brd, $1 \mathrm{H},{ }^{3} J=3.2 \mathrm{~Hz}, \mathrm{H}-\beta^{\prime *}$), 6.19 (brd, $1 \mathrm{H},{ }^{3} J=3.2 \mathrm{~Hz}, \mathrm{H}-\beta^{\prime}$), 6.31 (dd, $1 \mathrm{H},{ }^{3} J=3.2,{ }^{4} J=1.8 \mathrm{~Hz}, \mathrm{H}-$ $\left.\beta^{*}\right), 6.33$ (dd, $1 \mathrm{H},{ }^{3} J=3.2,1.8 \mathrm{~Hz}, \mathrm{H}-\beta$), 7.37 (dd, $1 \mathrm{H},{ }^{3} J=1.8$, $\left.{ }^{4} J=0.8 \mathrm{~Hz}, \mathrm{H}-\alpha^{*}\right), 7.39$ (dd, $1 \mathrm{H},{ }^{3} J=1.8,{ }^{4} J=0.8 \mathrm{~Hz}, \mathrm{H}-\alpha$).

Anal. Calcd. for $\mathrm{C}_{16} \mathrm{H}_{19} \mathrm{NO}_{2}$: C, 74.70; $\mathrm{H}, 7.39 ; \mathrm{N}, 5.44$. Found: C, 74.76; H, 7.42; N, 5.46.

3-(2-Furylmethyl)-2-allyl-10-oxa-3-azatricyclo[5.2.1.0 ${ }^{1,5}$]dec-8en (24).

Procedure A. A solution of amine $\mathbf{1 0 d}(3.0 \mathrm{~g}, 13.80 \mathrm{mmol})$ in 15 mL of acetone was added dropwise to a stirred mixture of $\mathrm{K}_{2} \mathrm{CO}_{3}(7.6 \mathrm{~g}, 55.20 \mathrm{mmol})$ and allylbromide ($2.4 \mathrm{~mL}, 27.60$ mmol) in 25 mL of acetone. After the complete amine addition the reaction mixture was refluxed for 1 h and poured into 100 mL of water. The organic products were extracted with ether (3 $\times 50 \mathrm{~mL}$), combined organic layers were dried over MgSO_{4} and evaporated to give dark-brown residue. Its further column chromatography on $\mathrm{Al}_{2} \mathrm{O}_{3}(4 \times 5 \mathrm{~cm}$, using hexane/ethyl acetate, 10:1 as eluent) gave pure 24: $1.17 \mathrm{~g}(4.60 \mathrm{mmol})$, yield 33%.

Procedure B. A solution of diallylderivative 232.0 g (7.78 mmol) in 10 mL of benzene was refluxed for 30 min (TLC monitoring). Benzene was removed under reduced pressure, the residual brown oil was purified by column chromatography on $\mathrm{Al}_{2} \mathrm{O}_{3}(4 \times 5 \mathrm{~cm}$, using hexane/ethyl acetate, $10: 1$ as eluent) to give 24: $0.59 \mathrm{~g}(2.33 \mathrm{mmol})$, yield 30%.

Compound 24: pale yellow oil; $R_{\mathrm{f}} 0.47$ (ethyl acetate-hexane, 1:1); ir: 1640 (C=C) cm^{-1}; ms: m/z M 257 (5), 217 (8), 216 (63), 136 (16), 121 (4), 108 (5), 94 (7), 81 (100), 77 (6), 53 (11), 41 (6); ${ }^{1} \mathrm{H} \mathrm{nmr}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 1.28\left(\mathrm{dd}, 1 \mathrm{H},{ }^{2} J=11.3\right.$, ${ }^{3} J=7.3 \mathrm{~Hz}, \mathrm{H}-6$ endo), 1.66 (ddd, $1 \mathrm{H},{ }^{2} J=11.3,{ }^{3} J=4.3,2.8 \mathrm{~Hz}, \mathrm{H}-$ 6 exo), 1.98 (dddd, 1H, J=2.8, 7.3, 6.7, $10.4 \mathrm{~Hz}, \mathrm{H}-5$), 2.24 (dd, $\left.1 \mathrm{H},{ }^{2} J=8.2,{ }^{3} J=10.4 \mathrm{~Hz}, \mathrm{H}-4 \mathrm{~B}\right), 2.30-2.45$ (m, 2H, H-3'), 2.93 (dd, $\left.1 \mathrm{H},{ }^{3} J=5.5,7.3 \mathrm{~Hz}, \mathrm{H}-4^{\prime}\right), 3.23$ (dd, $1 \mathrm{H},{ }^{2} J=8.2,{ }^{3} J=6.7 \mathrm{~Hz}$, H-4A), 3.68 (d, 1H, $\left.{ }^{2} J=14.3 \mathrm{~Hz}, \mathrm{H}-2 \mathrm{~B}\right), 3.88\left(\mathrm{~d}, 1 \mathrm{H},{ }^{2} J=14.3 \mathrm{~Hz}\right.$, $\mathrm{H}-2 \mathrm{~A}$), 4.94 (dd, $1 \mathrm{H},{ }^{3} J=4.3,1.5 \mathrm{~Hz}, \mathrm{H}-7$), $5.12\left(\mathrm{~m}, 1 \mathrm{H},{ }^{3} \mathrm{~J}=17.0\right.$, ${ }^{2} J=1.5 \mathrm{~Hz}, \mathrm{H}-1$ 'trans $), 5.14\left(\mathrm{~m}, 1 \mathrm{H},{ }^{3} J=10.1,{ }^{2} J=1.5 \mathrm{~Hz}, \mathrm{H}-\right.$ 1^{\prime} cis), 5.93 (ddt, $\left.1 \mathrm{H},{ }^{3} J=17.0,10.1,6.4 \mathrm{~Hz}, \mathrm{H}-2^{\prime}\right), 6.18$ (dd, 1 H , $\left.{ }^{3} J=3.1,{ }^{4} J=0.8 \mathrm{~Hz}, \mathrm{H}-\beta^{\prime}\right), 6.24\left(\mathrm{dd}, 1 \mathrm{H},{ }^{3} J=5.8,1.5 \mathrm{~Hz}, \mathrm{H}-8\right)$, 6.29 (dd, $\left.1 \mathrm{H},{ }^{3} J=3.1,1.8 \mathrm{~Hz}, \mathrm{H}-\beta\right), 6.43\left(\mathrm{~d}, 1 \mathrm{H},{ }^{3} J=5.8 \mathrm{~Hz}, \mathrm{H}-9\right)$, 7.35 (dd, $1 \mathrm{H},{ }^{3} J=1.8,{ }^{4} J=0.8 \mathrm{~Hz}, \mathrm{H}-\alpha$).

Anal. Calcd. for $\mathrm{C}_{10} \mathrm{H}_{19} \mathrm{NO}_{2}$: C, 74.70; H, 7.39; N, 5.44. Found: C, 74.64; H, 7.43; N, 5.57.

3-Acetyl-3-aza-11-oxatricyclo[6.2.1.0 ${ }^{1,6}$]undec-9-enes (26a-d).

Typical Procedure.

Homoallylamine 10a-e (0.1 mol) was refluxed in a 20 -fold molar excess of acetic anhydride for 3-6 h (TLC control). Excess anhydride was distilled off under reduced pressure, the residue was diluted with water (200 mL), basified with NaHCO_{3} to $\mathrm{pH} 9-10$, extracted with ethyl acetate $(3 \times 70 \mathrm{~mL})$, dried over MgSO_{4} and evaporated. The residue was recrystallized from hexane-ethyl acetate or purified by chromatography on $\mathrm{Al}_{2} \mathrm{O}_{3}$ (using hexane as eluent). Tricyclic compounds 26a-d were isolated as colorless crystals.

3-Acetyl-3-aza-4-phenyl-11-oxatricyclo[6.2.1.0 ${ }^{1,6}$]undec-9-ene (26a).

Yield 9.14 g (34%); mp $117-118{ }^{\circ} \mathrm{C}$; ir: 1639 ($\mathrm{C}=\mathrm{C}$, and $\mathrm{N}-\mathrm{C}=\mathrm{O}$) $\mathrm{cm}^{-1} ; \mathrm{ms}: \mathrm{m} / \mathrm{z} \mathrm{M}^{+} 269$ (16), 228 (8), 227 (26), 210 (12), 208 (15), 188 (9), 186 (8), 146 (7), 138 (33), 104 (13), 96 (46), 91 (19), 81 (100), 53 (12), 43 (21); ${ }^{1} \mathrm{H} \mathrm{nmr}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta$ $1.35-1.80$ and $2.20-2.40(\mathrm{~m}, 6 \mathrm{H}, \mathrm{H}-4,2 \mathrm{H}-5, \mathrm{H}-6,2 \mathrm{H}-7), 2.04$ (s, 3H, Ac), 3.35 (brd, 1H, $J=14.3 \mathrm{~Hz}, \mathrm{H}-2 \mathrm{~A}$), 4.87 (dd, 1 H , $J=1.8,4.3 \mathrm{~Hz}, \mathrm{H}-8$), 5.01 (brd, $1 \mathrm{H}, J=14.3 \mathrm{~Hz}, \mathrm{H}-2 \mathrm{~B}$), 6.28 (brdd, $1 \mathrm{H}, J=1.8,5.8 \mathrm{~Hz}, \mathrm{H}-9), 6.41$ (d, $1 \mathrm{H}, J=5.8 \mathrm{~Hz}, \mathrm{H}-10$), 7.15-7.35 (m, 5H, H-Ph).

Anal. Calcd. for $\mathrm{C}_{17} \mathrm{H}_{19} \mathrm{NO}_{2}$: C, 75.84; H, 7.06; $\mathrm{N}, 5.20$. Found: C, 75.58; H, 7.20; N, 5.25.

3-Acetyl-3-aza-4-(4-methoxyphenyl)-11-oxatricyclo[6.2.1.0 ${ }^{1,6}$]-undec-9-ene (26b).

Yield $18.84 \mathrm{~g}(63 \%) ; \mathrm{mp} 100-102{ }^{\circ} \mathrm{C}$; ir: $1640(\mathrm{C}=\mathrm{C}$, and $\mathrm{N}-\mathrm{C}=\mathrm{O}) \mathrm{cm}^{-1}$; ms: m/z M 299 (100), 257 (20), 240 (24), 238 (27), 218 (15), 195 (8), 161 (12), 134 (18), 121 (7), 81 (23), 43 (7); ${ }^{1} \mathrm{H} \mathrm{nmr}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 1.35-1.95(\mathrm{~m}, 5 \mathrm{H}, 2 \mathrm{H}-5, \mathrm{H}-6$, $2 \mathrm{H}-7$), 2.31 (brs, $3 \mathrm{H}, \mathrm{Ac}$), 3.13 (brd, $1 \mathrm{H}, J=15.0 \mathrm{~Hz}, \mathrm{H}-2 \mathrm{~A}$), 3.77 (s, 3H, OMe), 4.75 (m, 1H, H-4), 4.88 (m, 1H, H-8), 5.45 (brd, $1 \mathrm{H}, J=15.0 \mathrm{~Hz}, \mathrm{H}-2 \mathrm{~B}), 6.28(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-9), 6.39(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-$ 10), 6.85 ($\left.\mathrm{AA}^{\prime}, 2 \mathrm{H}, \mathrm{H}-\mathrm{Ph}\right), 7.20\left(\mathrm{BB}^{\prime}, 2 \mathrm{H}, \mathrm{H}-\mathrm{Ph}\right)$.

Anal. Calcd. for $\mathrm{C}_{18} \mathrm{H}_{21} \mathrm{NO}_{3}$: C, $72.24 ; \mathrm{H}, 7.02 ; \mathrm{N}, 4.68$. Found: C, 72.30; H, 6.80; N, 4.82.

3-Acetyl-3-aza-4-(2-thienyl)-11-oxatricyclo[6.2.1.0 ${ }^{1,6}$]undec-9ene (26c).

Yield $7.70 \mathrm{~g}(28 \%)$; mp $108-108.5^{\circ} \mathrm{C}$; ir: 1636 (C=C, and $\mathrm{N}-\mathrm{C}=\mathrm{O}) \mathrm{cm}^{-1}$; ms: $\mathrm{m} / \mathrm{z} \mathrm{M}^{+} 275$ (30), 233 (34), 216 (22), 214 (22), 194 (16), 152 (18), 138 (22), 110 (18), 97 (17), 96 (32), 91 (7), 81 (100), 53 (14), 43 (30); ${ }^{1} \mathrm{H} \mathrm{nmr}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta$ $1.35-1.65,1.70-1.95$ and $2.30-2.50(\mathrm{~m}, 5 \mathrm{H}, 2 \mathrm{H}-5, \mathrm{H}-6,2 \mathrm{H}-7)$, 2.16 (brs, $3 \mathrm{H}, \mathrm{Ac}$), 3.37 (m, 1H, H-4), 4.73 (brd, $1 \mathrm{H}, J=15.6 \mathrm{~Hz}$, H-2A), 4.89 (dd, 1H, $J=1.2,3.7 \mathrm{~Hz}, \mathrm{H}-8$), 5.41 (brd, $1 \mathrm{H}, J=15.6$ $\mathrm{Hz}, \mathrm{H}-2 \mathrm{~B}$), 6.30 (brdd, $1 \mathrm{H}, J=1.2,5.8 \mathrm{~Hz}, \mathrm{H}-9$), 6.38 (d, 1 H , $J=5.8 \mathrm{~Hz}, \mathrm{H}-10), 6.90-7.00\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-\beta\right.$ and $\left.\mathrm{H}-\beta^{\prime}\right), 7.18$ (dd, $1 \mathrm{H}, J=1.2,4.6 \mathrm{~Hz}, \mathrm{H}-\alpha)$.
Anal. Calcd. for $\mathrm{C}_{15} \mathrm{H}_{17} \mathrm{NO}_{2} \mathrm{~S}: \mathrm{C}, 65.45 ; \mathrm{H}, 6.18 ; \mathrm{N}, 5.09$. Found: C, 65.73; H, 6.03; N, 5.16.

3-Acetyl-3-aza-4-(2-furyl)-11-oxatricyclo[6.2.1.0 ${ }^{1,6}$]undec-9-ene (26d).

Yield 5.96 g (23\%); mp $114-116{ }^{\circ} \mathrm{C}$; ir: $1667(\mathrm{C}=\mathrm{C}$, and $\mathrm{N}-\mathrm{C}=\mathrm{O}) \mathrm{cm}^{-1} ; \mathrm{ms}: \mathrm{m} / \mathrm{z} \mathrm{M}{ }^{+} 259$ (5), 218 (6), 179 (6), 178 (54), 138 (28), 136 (31), 96 (32), 91 (8), 81 (100), 77 (6), 53 (14), 43 (18); ${ }^{1} \mathrm{H} \mathrm{nmr}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 1.35-1.60,1.70-1.95$ and $2.20-2.50$ (m, 5H, 2H-5, H-6, 2H-7), 2.18 (brs, 3H, Ac), 3.32 (brd, $1 \mathrm{H}, J=15.3 \mathrm{~Hz}, \mathrm{H}-2 \mathrm{~A}$), 4.77 (m, 1H, H-4), 4.89 (dd, 1 H , $J=1.5,4.0 \mathrm{~Hz}, \mathrm{H}-8$), 5.14 (brd, $1 \mathrm{H}, J=15.3 \mathrm{~Hz}, \mathrm{H}-2 \mathrm{~B}$), 6.28 (brdd, 1H, $J=1.5,5.8 \mathrm{~Hz}, \mathrm{H}-9), 6.37$ (d, $1 \mathrm{H}, J=5.8 \mathrm{~Hz}, \mathrm{H}-10$), 6.20 (dd, 1H, $\left.J=0.9,3.4 \mathrm{~Hz}, \mathrm{H}-\beta^{\prime}\right), 6.27$ (dd, $1 \mathrm{H}, J=1.8,3.4 \mathrm{~Hz}$, $\mathrm{H}-\beta$), 7.33 (dd, $1 \mathrm{H}, J=0.9,1.8 \mathrm{~Hz}, \mathrm{H}-\alpha$).
Anal. Calcd. for $\mathrm{C}_{15} \mathrm{H}_{17} \mathrm{NO}_{3}$: $\mathrm{C}, 69.49 ; \mathrm{H}, 6.56 ; \mathrm{N}, 5.40$. Found: C, 69.65; H, 6.56; N, 5.46.
2-Methallyl-3-aza-4-oxo-10-oxatricyclo[5.2.1.0 $0^{1,5}$]dec-8-enes (28a-f). Typical Procedure.

Acryloyl chloride ($9.0 \mathrm{~mL}, 0.11 \mathrm{~mol}$) was added dropwise to a stirred solution of corresponding amine 11a-c or 12a-c (0.05 $\mathrm{mol})$ and triethylamine ($20.8 \mathrm{~mL}, 0.15 \mathrm{~mol}$) in acetonitrile (100 mL). After the complete addition of acryloyl chloride the reaction mixture was refluxed for $6-8 \mathrm{~h}$ (TLC monitoring). The reaction mixture was cooled, poured into water (300 mL), basified with 25% aqueous ammonia to $\mathrm{pH} \sim 10-11$, extracted with chloroform $(6 \times 80 \mathrm{~mL})$, dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated in vacuo. Resulting residue was purified by column chromatography on $\mathrm{Al}_{2} \mathrm{O}_{3}(3.5 \times 30 \mathrm{~cm}$, using hexane/ethyl acetate, 10:1 as eluent) to give a mixture of isomers. Final separation of the isomers 28aA and 28aB, 28bA and 28bB, 28cA and 28cB, 28dA was carried out by column
chromatography of isomeric mixture $(0.5 \mathrm{~g})$ on $\mathrm{Al}_{2} \mathrm{O}_{3}(1.5 \times 20$ cm , using hexane/ethyl acetate, from 50:1 to 10:1 as eluent).
2-Methallyl-3-aza-4-oxo-3-phenyl-10-oxatricyclo[5.2.1.0 ${ }^{1,5}$]dec8 -ene (28a).

Yield 7.03 g (50%); ratio of isomers $\mathbf{A} / \mathbf{B}=6 / 1$; ir: 1640 $(\mathrm{C}=\mathrm{C})$, and $1690(\mathrm{~N}-\mathrm{C}=\mathrm{O}) \mathrm{cm}^{-1} ; \mathrm{ms}: \mathrm{m} / \mathrm{z} \mathrm{M}^{+} 281$ (10), 226 (42), 172 (100), 135 (11), 117 (7), 91 (6), 77 (12), 55 (22).

Anal. Calcd. for $\mathrm{C}_{18} \mathrm{H}_{19} \mathrm{NO}_{2}$: C, 76.87; $\mathrm{H}, 6.76 ; \mathrm{N}, 4.98$. Found: C, 76.89; H, 6.74; N, 5.16.

Compound 28aA.

Colourless oil, $R_{\mathrm{f}} 0.44$ (ethyl acetate-hexane, 1:1); ${ }^{1} \mathrm{H} \mathrm{nmr}$ $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 1.60(\mathrm{dd}, 1 \mathrm{H}, J=8.8,11.8 \mathrm{~Hz}, \mathrm{H}-6$ endo $)$, 1.69 (s, $3 \mathrm{H}, \mathrm{Me}-2^{\prime}$), 2.20 (ddd, $1 \mathrm{H}, J=3.4,4.6,11.8 \mathrm{~Hz}, \mathrm{H}-$ 6 exo), 2.40 (dd, $1 \mathrm{H}, J=10.1,16.1 \mathrm{~Hz}, \mathrm{H}^{\prime} 3^{\prime} \mathrm{B}$), 2.54 (dd, 1 H , $\left.J=3.9,16.1 \mathrm{~Hz}, \mathrm{H}-3^{\prime} \mathrm{A}\right), 2.66(\mathrm{dd}, 1 \mathrm{H}, J=3.4,8.8 \mathrm{~Hz}, \mathrm{H}-5), 4.64$ (dd, 1H, J=3.9, $10.1 \mathrm{~Hz}, \mathrm{H}-2$), 4.81 (brs, $1 \mathrm{H}, \mathrm{H}-1^{\prime} \mathrm{A}$), 4.86 (brs, $1 \mathrm{H}, \mathrm{H}-1$ 'B), 4.99 (dd, 1H, $J=1.7,4.6 \mathrm{~Hz}, \mathrm{H}-7$), 6.33 (dd, 1 H , $J=1.7,5.9 \mathrm{~Hz}, \mathrm{H}-8), 6.47(\mathrm{~d}, 1 \mathrm{H}, J=5.9 \mathrm{~Hz}, \mathrm{H}-9), 7.14(\mathrm{~d}, 2 \mathrm{H}$, $J=7.8 \mathrm{~Hz}, \mathrm{H}-\mathrm{Ph}$), 7.32 (brt, $1 \mathrm{H}, J=7.8 \mathrm{~Hz}, \mathrm{H}-\mathrm{Ph}), 7.43(\mathrm{t}, 2 \mathrm{H}$, $J=7.8 \mathrm{~Hz}, \mathrm{H}-\mathrm{Ph}) .{ }^{13} \mathrm{C} \mathrm{nmr}\left(\mathrm{CDCl}_{3}, 100.6 \mathrm{MHz}\right) \delta 173.1$ (s, C-4), 140.4 (s, C-2'), 137.5 (s, C-1"), 136.4 (d, C-8, $J=175.6 \mathrm{~Hz}$), 132.0 (d, C-9, $J=177.8 \mathrm{~Hz}$), 128.7 (d, 2C, C-3", $5^{\prime \prime}, J=162.5$ Hz), 125.4 ($\mathrm{d}, \mathrm{C}-4^{\prime \prime}, J=163.5 \mathrm{~Hz}$), 123.1 (d, 2C, C-2", $6^{\prime \prime}$, $J=161.8 \mathrm{~Hz}$), 113.2 (t, C-1', $J=155.7 \mathrm{~Hz}$), 91.3 (s, C-1), 78.2 (d, C-7, $J=164.8 \mathrm{~Hz}$), 59.4 (d, C-2, $J=145.0 \mathrm{~Hz}$), 46.6 (d, C-5, $J=138.0 \mathrm{~Hz}$), 37.7 (t, C-3', $J=127.0 \mathrm{~Hz}$), 28.6 (t, C-6, $J=138.0$ $\mathrm{Hz}), 22.6\left(\mathrm{q}, \mathrm{Me}-2^{\prime}, J=126.3 \mathrm{~Hz}\right)$.

Compound 28aB.

White crystals, $\mathrm{mp} 112-114{ }^{\circ} \mathrm{C}$ (ethyl acetate-hexane); R_{f} 0.34 (ethyl acetate-hexane, $1: 1) ;{ }^{1} \mathrm{H} \mathrm{nmr}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta$ 1.61 (dd, 1H, J=8.8, $11.8 \mathrm{~Hz}, \mathrm{H}-6$ endo), 1.71 (s, 3H, Me-2'), 2.27 (ddd, 1H, J=3.5, 4.5, 11.8 Hz, H-6exo), 2.28 ($\mathrm{m}, 2 \mathrm{H}, \mathrm{H}-3^{\prime}$), 2.53 (dd, 1H, $J=3.5,8.8 \mathrm{~Hz}, \mathrm{H}-5), 4.76(\mathrm{dd}, 1 \mathrm{H}, J=6.4,8.2 \mathrm{~Hz}$, H-2), 4.75 (brs, 1H, H-1'B), 4.80 (brs, 1H, H-1'A), 5.08 (dd, 1H, $J=1.7,4.5 \mathrm{~Hz}, \mathrm{H}-7$), 6.27 (dd, $1 \mathrm{H}, J=1.7,5.8 \mathrm{~Hz}, \mathrm{H}-8$), 6.36 (d, $1 \mathrm{H}, J=5.8 \mathrm{~Hz}, \mathrm{H}-9), 7.20(\mathrm{t}, 1 \mathrm{H}, J=7.8 \mathrm{~Hz}, \mathrm{H}-\mathrm{Ph}), 7.27(\mathrm{~d}, 2 \mathrm{H}$, $J=7.8 \mathrm{~Hz}, \mathrm{H}-\mathrm{Ph}), 7.37(\mathrm{t}, 2 \mathrm{H}, J=7.8 \mathrm{~Hz}, \mathrm{H}-\mathrm{Ph}) .{ }^{13} \mathrm{C} \mathrm{nmr}\left(\mathrm{CDCl}_{3}\right.$, 100.6 MHz) $\delta 173.4$ (s, C-4), 140.3 (s, C-2'), 136.7 (s, C-1"), 135.0 (d, C-8, $J=175.5 \mathrm{~Hz}$), 134.0 (d, C-9, $J=177.0 \mathrm{~Hz}$), 128.7 (d, 2C, C-3" ${ }^{\prime \prime} 5^{\prime \prime}, J=162.0 \mathrm{~Hz}$), 126.1 (d, C-4", $J=162.7 \mathrm{~Hz}$), 125.3 (d, 2C, C-2", $6^{\prime \prime}, J=161.5 \mathrm{~Hz}$), 113.6 (t, C-1', $J=155.8$ Hz), 90.3 ($\mathrm{s}, \mathrm{C}-1$), 78.2 (d, C-7, $J=165.0 \mathrm{~Hz}$), 58.8 (d, C-2, $J=140.5 \mathrm{~Hz}$), 47.7 (d, C-5, $J=136.8 \mathrm{~Hz}$), 34.8 (t, C-3', $J=130.0$ Hz), 28.6 (t, C-6, $J=137.8 \mathrm{~Hz}$), $23.0\left(\mathrm{q}, \mathrm{Me}-2^{\prime}, J=126.0 \mathrm{~Hz}\right.$).
2-Methallyl-3-aza-4-oxo-3-(4-methylphenyl)-10-oxatricyclo[5.2.1.0 ${ }^{1,5}$]dec-8-ene (28b).

Yield 9.44 g (64\%); ratio of isomers $\mathbf{A} / \mathbf{B}=2.7 / 1$; ir: 1640 (C=C), and $1685(\mathrm{~N}-\mathrm{C}=\mathrm{O}) \mathrm{cm}^{-1} ; \mathrm{ms}: \mathrm{m} / \mathrm{z} \mathrm{M}^{+} 295$ (34), 240 (38), 186 (100), 118 (6), 91 (16), 77 (4), 65 (8), 55 (22), 39 (7).

Anal. Calcd. for $\mathrm{C}_{19} \mathrm{H}_{21} \mathrm{NO}_{2}: \mathrm{C}, 77.29 ; \mathrm{H}, 7.12 ; \mathrm{N}, 4.75$. Found: C, 77.17; H, 7.15; N, 4.66.

Compound 28bA.

White crystals, $\mathrm{mp} 106.5-108.5^{\circ} \mathrm{C}$ (ethyl acetate-hexane); R_{f} 0.20 (ethyl acetate-hexane, $1: 1) ;{ }^{1} \mathrm{H} \mathrm{nmr}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta$ 1.64 (dd, 1H, J=8.9, $11.8 \mathrm{~Hz}, \mathrm{H}-6$ endo), 1.73 (s, 3H, Me-2'), 2.26 (ddd, 1H, J=3.3, 4.5, $11.8 \mathrm{~Hz}, \mathrm{H}-6$ exo), 2.35 (s, 3H, Me-
$\left.4^{\prime \prime}\right), 2.42\left(\mathrm{dd}, 1 \mathrm{H}, J=10.3,16.0 \mathrm{~Hz}, \mathrm{H}-3^{\prime} \mathrm{B}\right), 2.58(\mathrm{dd}, 1 \mathrm{H}, J=3.8$, $16.0 \mathrm{~Hz}, \mathrm{H}-3^{\prime} \mathrm{A}$), 2.57 (dd, $1 \mathrm{H}, J=3.3,8.9 \mathrm{~Hz}, \mathrm{H}-5$), 4.62 (dd, $1 \mathrm{H}, J=3.8,10.3 \mathrm{~Hz}, \mathrm{H}-2), 4.84$ (brs, $\left.1 \mathrm{H}, \mathrm{H}-1^{\prime} \mathrm{A}\right), 4.90(\mathrm{~m}, 1 \mathrm{H}$, $\left.\mathrm{H}-1^{\prime} \mathrm{B}\right), 5.05(\mathrm{dd}, 1 \mathrm{H}, J=1.7,4.5 \mathrm{~Hz}, \mathrm{H}-7), 6.38(\mathrm{dd}, 1 \mathrm{H}, J=1.7$, $5.9 \mathrm{~Hz}, \mathrm{H}-8), 6.52(\mathrm{~d}, 1 \mathrm{H}, J=5.9 \mathrm{~Hz}, \mathrm{H}-9), 7.18$ ($\mathrm{BB}^{\prime}, 2 \mathrm{H}, J \sim 8.2$ $\mathrm{Hz}, \mathrm{H}-\mathrm{Ph}), 7.33\left(\mathrm{AA}^{\prime}, 2 \mathrm{H}, J \sim 8.2 \mathrm{~Hz}, \mathrm{H}-\mathrm{Ph}\right)$.

Compound 28bB.

White crystals, mp $96-97.5{ }^{\circ} \mathrm{C}$ (ethyl acetate-hexane); R_{f} 0.14 (ethyl acetate-hexane, $1: 1) ;{ }^{1} \mathrm{H} \mathrm{nmr}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta$ 1.65 (dd, $1 \mathrm{H}, J=8.8,11.8 \mathrm{~Hz}, \mathrm{H}-6 e n d o$), 1.74 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{Me}-2^{\prime}$), 2.30 (ddd, $1 \mathrm{H}, J=3.5,4.5,11.8 \mathrm{~Hz}, \mathrm{H}-6$ exo), 2.35 (s, 3H, Me$\left.4^{\prime \prime}\right), 2.30\left(\mathrm{~d}, 2 \mathrm{H}, J=7.4 \mathrm{~Hz}, \mathrm{H}-3^{\prime}\right), 2.68(\mathrm{dd}, 1 \mathrm{H}, J=3.5,8.8 \mathrm{~Hz}$, H-5), $4.75(\mathrm{t}, 1 \mathrm{H}, J=7.4 \mathrm{~Hz}, \mathrm{H}-2), 4.77(\mathrm{dd}, 1 \mathrm{H}, J=0.8,1.4 \mathrm{~Hz}$, $\left.\mathrm{H}-1^{\prime} \mathrm{B}\right), 4.83\left(\mathrm{t}, 1 \mathrm{H}, J=0.8 \mathrm{~Hz}, \mathrm{H}-1^{\prime} \mathrm{A}\right), 5.12(\mathrm{dd}, 1 \mathrm{H}, J=1.7,4.5$ $\mathrm{Hz}, \mathrm{H}-7), 6.30(\mathrm{dd}, 1 \mathrm{H}, J=1.7,5.8 \mathrm{~Hz}, \mathrm{H}-8), 6.39(\mathrm{~d}, 1 \mathrm{H}, J=5.8$ $\mathrm{Hz}, \mathrm{H}-9), 7.15-7.22\left(\mathrm{AA}^{\prime} \mathrm{BB}^{\prime}, 4 \mathrm{H}, \mathrm{H}-\mathrm{Ph}\right)$.

2-Methallyl-3-aza-4-oxo-3-(4-methoxyphenyl)-10-oxatricyclo[5.2.1.0 ${ }^{1,5}$]dec-8-ene (28c).

Yield $10.26 \mathrm{~g}(66 \%)$; ratio of isomers $\mathbf{A} / \mathbf{B}=2 / 1$; ir: 1640 $(\mathrm{C}=\mathrm{C})$, and $1685(\mathrm{~N}-\mathrm{C}=\mathrm{O}) \mathrm{cm}^{-1} ; \mathrm{ms}: \mathrm{m} / \mathrm{z} \mathrm{M}^{+} 311$ (48), 256 (28), 202 (100), 186 (9), 117 (8), 77 (10), 65 (4), 55 (29), 39 (7).

Anal. Calcd. for $\mathrm{C}_{19} \mathrm{H}_{21} \mathrm{NO}_{3}: \mathrm{C}, 73.31 ; \mathrm{H}, 6.75 ; \mathrm{N}, 4.50$. Found: C, 73.15; H, 6.83; N, 4.47.

Compound 28cA.

White crystals, mp $91.5-92{ }^{\circ} \mathrm{C}$ (ethyl acetate-hexane); $R_{\mathrm{f}} 0.47$ (ethyl acetate-hexane, $1: 1) ;{ }^{1} \mathrm{H} \mathrm{nmr}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 1.60(\mathrm{dd}$, $1 \mathrm{H}, J=8.9,11.8 \mathrm{~Hz}, \mathrm{H}-6$ endo $)$, 1.68 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{Me}-2^{\prime}$), 2.21 (ddd, 1 H , $J=3.4,4.5,11.8 \mathrm{~Hz}, \mathrm{H}-6$ exo), 2.39 (dd, $\left.1 \mathrm{H}, J=4.1,15.9 \mathrm{~Hz}, \mathrm{H}-3^{\prime} \mathrm{A}\right)$, 2.54 (dd, 1H, J=10.0, $15.9 \mathrm{~Hz}, \mathrm{H}^{\prime} 3^{\prime} \mathrm{B}$), $2.64(\mathrm{dd}, 1 \mathrm{H}, J=3.4,8.9 \mathrm{~Hz}$, $\mathrm{H}-5), 3.75$ ($\mathrm{s}, 3 \mathrm{H}, \mathrm{OMe}^{\prime \prime}$), $4.54(\mathrm{dd}, 1 \mathrm{H}, J=4.1,10.0 \mathrm{~Hz}, \mathrm{H}-2)$, 4.80 (brd, $\left.1 \mathrm{H}, J=0.8 \mathrm{~Hz}, \mathrm{H}^{\prime} 1^{\prime} \mathrm{A}\right), 4.85$ (brd, $1 \mathrm{H}, J=0.8 \mathrm{~Hz}, \mathrm{H}^{\prime} 1^{\prime} \mathrm{B}$), $5.01(\mathrm{dd}, 1 \mathrm{H}, J=1.7,4.5 \mathrm{~Hz}, \mathrm{H}-7), 6.34(\mathrm{dd}, 1 \mathrm{H}, J=1.7,6.0 \mathrm{~Hz}, \mathrm{H}-$ 8), 6.47 (d, 1H, J=6.0 Hz, H-9), 6.86 ($\left.\mathrm{BB}^{\prime}, 2 \mathrm{H}, J \sim 8.9 \mathrm{~Hz}, \mathrm{H}-\mathrm{Ph}\right)$, $7.29\left(\mathrm{AA}^{\prime}, 2 \mathrm{H}, J \sim 8.9 \mathrm{~Hz}, \mathrm{H}-\mathrm{Ph}\right) ;{ }^{13} \mathrm{C} \mathrm{nmr}\left(\mathrm{CDCl}_{3}, 100.6 \mathrm{MHz}\right) \delta$ 173.2 (s, C-4), 157.4 (s, C-4"), 140.6 (s, C-2'), 136.4 (d, C-8, $J=175.5 \mathrm{~Hz}$), 132.2 (d, C-9, $J=177.5 \mathrm{~Hz}$), 130.4 (s, C-1"), 125.6 (d, $2 \mathrm{C}, \mathrm{C}-2^{\prime \prime}$ and $6^{\prime \prime}, J=160.5 \mathrm{~Hz}$), 114.1 (d, 2C, C-3" and $5^{\prime \prime}, J=160.5$ Hz), 113.2 (t, C-1', J=155.5 Hz), 91.6 (s, C-1), 78.3 (d, C-7, $J=164.5 \mathrm{~Hz}), 60.2$ (d, C-2, $J=144.8 \mathrm{~Hz}$), 55.2 ($\mathrm{q}, \mathrm{OMe}-4^{\prime \prime}, J=144.0$ $\mathrm{Hz}), 46.3(\mathrm{~d}, \mathrm{C}-5, J=137.7 \mathrm{~Hz}), 38.0\left(\mathrm{t}, \mathrm{C}-3^{\prime}, J=127.5 \mathrm{~Hz}\right), 28.6(\mathrm{t}$, C-6, $J=138.0 \mathrm{~Hz}$), 22.6 ($\mathrm{q}, \mathrm{Me}-2^{\prime}, ~ J=126.2 \mathrm{~Hz}$).

Compound 28cB.

Pale yellow oil, $R_{\mathrm{f}} 0.36$ (ethyl acetate-hexane, $1: 1$); ${ }^{1} \mathrm{H} \mathrm{nmr}$ $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 1.60(\mathrm{dd}, 1 \mathrm{H}, J=8.8,11.8 \mathrm{~Hz}, \mathrm{H}-6$ endo $)$, 1.69 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{Me}-2^{\prime}$), 2.22 (dd, $\left.1 \mathrm{H}, J=10.2,13.8 \mathrm{~Hz}, \mathrm{H}-3^{\prime} \mathrm{B}\right), 2.25$ (ddd, 1H, J=3.5, 4.5, $11.8 \mathrm{~Hz}, \mathrm{H}-6$ exo), 2.27 (dd, $1 \mathrm{H}, J=4.5,13.8$ $\mathrm{Hz}, \mathrm{H}-3^{\prime} \mathrm{A}$), 2.52 (dd, $1 \mathrm{H}, J=3.5,8.8 \mathrm{~Hz}, \mathrm{H}-5$), 3.76 (s, 3H, OMe$\left.4^{\prime \prime}\right), 4.67(\mathrm{dd}, 1 \mathrm{H}, J=4.5,10.2 \mathrm{~Hz}, \mathrm{H}-2), 4.72$ (brs, $\left.1 \mathrm{H}, \mathrm{H}-1^{\prime} \mathrm{B}\right)$, 4.78 (m, 1H, H-1'A), 5.07 (dd, 1H, J=1.7, $4.5 \mathrm{~Hz}, \mathrm{H}-7$), 6.26 (dd, $1 \mathrm{H}, J=1.7,5.8 \mathrm{~Hz}, \mathrm{H}-8), 6.35(\mathrm{~d}, 1 \mathrm{H}, J=5.8 \mathrm{~Hz}, \mathrm{H}-9), 6.89\left(\mathrm{BB}^{\prime}\right.$, $2 \mathrm{H}, J \sim 8.9 \mathrm{~Hz}, \mathrm{H}-\mathrm{Ph}), 7.15\left(\mathrm{AA}^{\prime}, 2 \mathrm{H}, J \sim 8.9 \mathrm{~Hz}, \mathrm{H}-\mathrm{Ph}\right) ;{ }^{1} \mathrm{H} \mathrm{nmr}$ $\left(\mathrm{C}_{6} \mathrm{D}_{6}, 400 \mathrm{MHz}\right) \delta 1.35\left(\mathrm{dd}, 1 \mathrm{H}, J_{6 \text { endo,6exo }}=11.7, J_{5, \text { endo }}=8.7 \mathrm{~Hz}\right.$, H-6endo), 1.71 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{Me}-2^{\prime}$), 2.31 (dd, 1H, $J_{5,6 \text { endo }}=8.7$, $\left.J_{5,6 \text { exo }}=3.5 \mathrm{~Hz}, \mathrm{H}-5\right), 2.42\left(\mathrm{ddd}, 1 \mathrm{H}, J_{6 \text { endo }, \text { eexo }}=11.8, J_{7,6 \text { exo }}=4.5\right.$, $J_{5,6 \text { exo }}=3.5 \mathrm{~Hz}, \mathrm{H}-6$ exo $), 2.49\left(\mathrm{dd}, 1 \mathrm{H}, J_{2,3^{\prime} \mathrm{A}}=3.6, J_{3^{\prime} \mathrm{A}, 3^{\prime} \mathrm{B}}=13.7 \mathrm{~Hz}\right.$, $\left.\mathrm{H}-3^{\prime} \mathrm{A}\right), 2.62\left(\mathrm{dd}, 1 \mathrm{H}, J_{2,3^{\prime} \mathrm{B}}=10.9, J_{3^{\prime} \mathrm{A}, 3^{\prime} \mathrm{B}}=13.7 \mathrm{~Hz}, \mathrm{H}-3^{\prime} \mathrm{B}\right), 3.40$ $\left(\mathrm{s}, 3 \mathrm{H}, \mathrm{OMe}-4^{\prime \prime}\right), 4.45\left(\mathrm{dd}, 1 \mathrm{H}, J_{2,3^{\prime} \mathrm{B}}=10.9, J_{2,3^{\prime} \mathrm{A}}=3.6 \mathrm{~Hz}, \mathrm{H}-2\right)$,
$4.73\left(\mathrm{dd}, 1 \mathrm{H}, J_{7,8}=1.7, J_{7,6 e x 0}=4.5 \mathrm{~Hz}, \mathrm{H}-7\right), 4.94$ (brs, $\left.1 \mathrm{H}, \mathrm{H}-1^{\prime}\right)$, 4.95 (brs, $\left.1 \mathrm{H}, \mathrm{H}^{\prime} 1^{\prime}\right), 5.82$ (dd, $1 \mathrm{H}, J_{8,9}=5.8, J_{7,8}=1.7 \mathrm{~Hz}, \mathrm{H}-8$), $6.05\left(\mathrm{~d}, 1 \mathrm{H},{ }^{3} \mathrm{~J}=5.8 \mathrm{~Hz}, \mathrm{H}-9\right), 6.89\left(\mathrm{BB}^{\prime}, 2 \mathrm{H}, \mathrm{H}-3^{\prime \prime}\right.$ and $\left.\mathrm{H}-5^{\prime \prime}\right)$, 7.39 ($\mathrm{AA}^{\prime}, 2 \mathrm{H}, \mathrm{H}-2^{\prime \prime}$ and $\left.\mathrm{H}-6^{\prime \prime}\right)$) ${ }^{13} \mathrm{C} \mathrm{nmr}\left(\mathrm{CDCl}_{3}, 100.6 \mathrm{MHz}\right) \delta$ 173.7 (s, C-4), 157.9 (s, C-4"), 140.3 (s, C-2'), 135.0 (d, C-8, $J=175.0 \mathrm{~Hz}$), $134.0\left(\mathrm{~d}, \mathrm{C}-9, J=176.5 \mathrm{~Hz}\right.$), 129.4 ($\left.\mathrm{s}, \mathrm{C}-1^{\prime \prime}\right), 127.1$ (d, 2C, C-2" and $\left.6^{\prime \prime}, J=160.3 \mathrm{~Hz}\right), 114.1\left(\mathrm{~d}, 2 \mathrm{C}, \mathrm{C}-3^{\prime \prime}\right.$ and $5^{\prime \prime}$, $J=160.0 \mathrm{~Hz}$), 113.6 (t, C-1', $J=155.8 \mathrm{~Hz}$), 90.5 ($\mathrm{s}, \mathrm{C}-1$), 78.3 (d, $\mathrm{C}-7, J=164.5 \mathrm{~Hz}$), 59.2 (d, C-2, $J=140.0 \mathrm{~Hz}$), 55.2 (q, OMe-4", $J=144.2 \mathrm{~Hz}), 47.6(\mathrm{~d}, \mathrm{C}-5, J=137.0 \mathrm{~Hz}), 35.0\left(\mathrm{t}, \mathrm{C}-3^{\prime}, J=128.5\right.$ $\mathrm{Hz}), 28.5(\mathrm{t}, \mathrm{C}-6, J=137.5 \mathrm{~Hz}), 23.0\left(\mathrm{q}, \mathrm{Me}-2^{\prime}, J=126.3 \mathrm{~Hz}\right)$.

2-Methallyl-3-aza-4-oxo-3-benzyl-10-oxatricyclo[5.2.1.0 ${ }^{1,5}$ dec8 -ene (28d).

Colourless oil, yield 12.68 g (86%); ratio of isomers $\mathbf{A} / \mathbf{B}=$ $10 / 1$; ir: $1640(\mathrm{C}=\mathrm{C})$, and $1685(\mathrm{~N}-\mathrm{C}=\mathrm{O}) \mathrm{cm}^{-1} ; R_{\mathrm{f}} 0.17$ (ethyl acetate-hexane, 1:5); ms: m/z M 295 (9), 240 (53), 186 (100), 160 (4), 134 (2), 106 (8), 91 (84), 65 (8), 55 (24), 27 (4); ${ }^{1} \mathrm{H} \mathrm{nmr}$ $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right.$, isomer A) $\delta 1.60(\mathrm{dd}, 1 \mathrm{H}, J=8.8,11.6 \mathrm{~Hz}, \mathrm{H}-$ 6 endo), $1.70\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Me}-2^{\prime}\right), 2.24$ (ddd, $1 \mathrm{H}, J=2.9,4.5,11.6 \mathrm{~Hz}$, H-6exo), 2.37 (dd, $1 \mathrm{H}, J=8.1,15.3 \mathrm{~Hz}, \mathrm{H}-3^{\prime} \mathrm{B}$), 2.51 (dd, 1 H , $\left.J=5.7,15.3 \mathrm{~Hz}, \mathrm{H}-3^{\prime} \mathrm{A}\right), 2.56(\mathrm{dd}, 1 \mathrm{H}, J=2.9,8.8 \mathrm{~Hz}, \mathrm{H}-5), 3.89$ (dd, $1 \mathrm{H}, J=5.7,8.1 \mathrm{~Hz}, \mathrm{H}-2), 4.05\left(\mathrm{~d}, 1 \mathrm{H}, J=15.3 \mathrm{~Hz}, \mathrm{NCH}_{2}-\mathrm{B}\right)$, 4.82 (brs, $\left.1 \mathrm{H}, \mathrm{H}^{\prime} 1^{\prime} \mathrm{A}\right), 4.90$ (brs, $\left.1 \mathrm{H}, \mathrm{H}-1^{\prime} \mathrm{B}\right), 5.03$ (dd, 1 H , $J=1.6,4.5 \mathrm{~Hz}, \mathrm{H}-7), 5.10\left(\mathrm{~d}, 1 \mathrm{H}, J=15.3 \mathrm{~Hz}, \mathrm{NCH}_{2}-\mathrm{A}\right), 6.33$ (dd, $1 \mathrm{H}, J=1.6,5.9 \mathrm{~Hz}, \mathrm{H}-8), 6.43(\mathrm{~d}, 1 \mathrm{H}, J=5.9 \mathrm{~Hz}, \mathrm{H}-9)$, 7.19-7.33 (m, 5H, H-Ph). Anal. Calcd. for $\mathrm{C}_{19} \mathrm{H}_{21} \mathrm{NO}_{2}$: C, 77.29; H, 7.12; N, 4.75. Found: C, 77.41; H, 7.18; N, 4.76.

2-Methallyl-3-aza-4-oxo-3-(4-methylbenzyl)-10-oxatricyclo[5.2.1.0 ${ }^{1,5}$]dec-8-ene (28e).

Yield $10.51 \mathrm{~g}(68 \%)$; ratio of isomers $\mathbf{A} / \mathbf{B}=8.4 / 1$; ir: 1645 $(\mathrm{C}=\mathrm{C})$, and $1680(\mathrm{~N}-\mathrm{C}=\mathrm{O}) \mathrm{cm}^{-1} ; \mathrm{ms}: \mathrm{m} / \mathrm{z} \mathrm{M}^{+} 309$ (12), 254 (16), 200 (20), 174 (7), 120 (27), 105 (100), 90 (4), 64 (4), 54 (12), 38 (5).

Anal. Calcd. for $\mathrm{C}_{20} \mathrm{H}_{23} \mathrm{NO}_{2}: \mathrm{C}, 77.67 ; \mathrm{H}, 7.44 ; \mathrm{N}, 4.53$. Found: C, 77.61; H, 7.40; N, 4.34.

Compound 28eA.

White crystals, mp $101.5-103{ }^{\circ} \mathrm{C}$ (ethyl acetate-hexane); R_{f} 0.35 (ethyl acetate-hexane, $1: 1) ;{ }^{1} \mathrm{H} \mathrm{nmr}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta$ 1.60 (dd, $1 \mathrm{H}, J=8.8,11.7 \mathrm{~Hz}, \mathrm{H}-6$ endo), 1.72 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{Me}-2^{\prime}$), 2.24 (ddd, $1 \mathrm{H}, J=3.3,4.4,11.7 \mathrm{~Hz}, \mathrm{H}-6$ exo), 2.30 (s, 3H, Me$\left.4^{\prime \prime}\right), 2.37\left(\mathrm{dd}, 1 \mathrm{H}, J=8.3,15.1 \mathrm{~Hz}, \mathrm{H}-3^{\prime} \mathrm{B}\right), 2.52$ (dd, $1 \mathrm{H}, J=5.7$, $15.1 \mathrm{~Hz}, \mathrm{H}-3^{\prime} \mathrm{A}$), 2.57 (dd, $1 \mathrm{H}, J=3.3,8.8 \mathrm{~Hz}, \mathrm{H}-5$), 3.87 (dd, $1 \mathrm{H}, J=5.7,8.3 \mathrm{~Hz}, \mathrm{H}-2), 4.00\left(\mathrm{~d}, 1 \mathrm{H}, J=15.4 \mathrm{~Hz}, \mathrm{NCH}_{2}-\mathrm{B}\right), 4.83$ (s, 1H, H-1'A), 4.91 (brs, 1H, H-1'B), 5.03 (dd, 1H, J=1.3, 4.4 $\mathrm{Hz}, \mathrm{H}-7), 5.07\left(\mathrm{~d}, 1 \mathrm{H}, J=15.4 \mathrm{~Hz}, \mathrm{NCH}_{2}-\mathrm{A}\right), 6.34$ (dd, 1 H , $J=1.3,5.9 \mathrm{~Hz}, \mathrm{H}-8), 6.44(\mathrm{~d}, 1 \mathrm{H}, J=5.9 \mathrm{~Hz}, \mathrm{H}-9), 7.10(\mathrm{~s}, 4 \mathrm{H}$, $\mathrm{H}-\mathrm{Ph})$.

Compound 28eB.

Pale yellow oil, $R_{\mathrm{f}} 0.44$ (ethyl acetate-hexane, $1: 1$); ${ }^{1} \mathrm{H} \mathrm{nmr}$ $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 1.59(\mathrm{dd}, 1 \mathrm{H}, J=8.8,11.8 \mathrm{~Hz}, \mathrm{H}-6$ endo $)$, 1.59 (s, $3 \mathrm{H}, \mathrm{Me}-2^{\prime}$), 2.21 (ddd, $1 \mathrm{H}, J=3.5,4.6,11.8 \mathrm{~Hz}, \mathrm{H}-$ 6exo), 2.32 (s, $3 \mathrm{H}, \mathrm{Me}-4^{\prime \prime}$), 2.37 (dd, $1 \mathrm{H}, J=10.2,13.6 \mathrm{~Hz}, \mathrm{H}-$ $\left.3^{\prime} \mathrm{B}\right), 2.40(\mathrm{dd}, 1 \mathrm{H}, J=3.5,8.8 \mathrm{~Hz}, \mathrm{H}-5), 2.47$ (dd, $1 \mathrm{H}, J=4.6$, $\left.13.6 \mathrm{~Hz}, \mathrm{H}-3^{\prime} \mathrm{A}\right), 4.03\left(\mathrm{~d}, 1 \mathrm{H}, J=15.2 \mathrm{~Hz}, \mathrm{NCH}_{2}-\mathrm{B}\right), 4.07$ (dd, $1 \mathrm{H}, J=4.6,10.2 \mathrm{~Hz}, \mathrm{H}-2$), 4.69 (brs, $1 \mathrm{H}, \mathrm{H}-1^{\prime} \mathrm{B}$), 4.78 (brs, 1 H , $\left.\mathrm{H}-1^{\prime} \mathrm{A}\right), 4.89\left(\mathrm{~d}, 1 \mathrm{H}, J=15.2 \mathrm{~Hz}, \mathrm{NCH}_{2}-\mathrm{A}\right), 5.03(\mathrm{dd}, 1 \mathrm{H}, J=0.9$, $4.6 \mathrm{~Hz}, \mathrm{H}-7), 6.24$ (m, 2H, H-8 and H-9), 7.12 (s, 4H, H-Ph).

2-Methallyl-3-aza-4-oxo-3-(4-methoxybenzyl)-10-oxatricyclo[5.2.1. $0^{1,5}$]dec-8-ene (28f).

White crystals, yield $14.14 \mathrm{~g}(87 \%)$; ratio of isomers $\mathbf{A} / \mathbf{B}=$ $4.5 / 1$ (inseparable mixture of isomers); $\mathrm{mp} 57.5-64{ }^{\circ} \mathrm{C}$ (ethyl acetate-hexane); $R_{\mathrm{f}} \quad 0.25$ (ethyl acetate-hexane, 1:3); ir: 1640 ($\mathrm{C}=\mathrm{C}$), and $1675(\mathrm{~N}-\mathrm{C}=\mathrm{O}) \mathrm{cm}^{-1} ; \mathrm{ms}: \mathrm{m} / \mathrm{z} \mathrm{M}^{+} 325$ (24), 270 (6), 217 (6), 136 (21), 121 (100), 91 (4), 77 (7), 55 (18), 39 (4); ${ }^{1} \mathrm{H}$ $\mathrm{nmr}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right.$, isomer $\left.\mathbf{A}\right) \delta 1.60(\mathrm{dd}, 1 \mathrm{H}, J=8.9,11.7 \mathrm{~Hz}$, H-6endo), 1.71 (s, 3H, Me-2'), 2.23 (ddd, $1 \mathrm{H}, J=3.5,4.5,11.7 \mathrm{~Hz}$, H-6exo), 2.36 (dd, $1 \mathrm{H}, J=8.3,15.2 \mathrm{~Hz}, \mathrm{H}-3^{\prime} \mathrm{B}$), 2.51 (dd, 1 H , $J=5.7,15.2 \mathrm{~Hz}, \mathrm{H}-3^{\prime} \mathrm{A}$), 2.56 (brdd, $1 \mathrm{H}, J=3.5,8.9 \mathrm{~Hz}, \mathrm{H}-5$), 3.76 (s, 3H, OMe-4"), 3.87 (dd, 1H, J=5.7, $8.3 \mathrm{~Hz}, \mathrm{H}-2$), 3.98 (d, 1H, $J=15.4 \mathrm{~Hz}, \mathrm{NCH}_{2}-\mathrm{B}$), 4.82 (brs, $1 \mathrm{H}, \mathrm{H}^{\prime} 1^{\prime} \mathrm{A}$), 4.90 (brs, $1 \mathrm{H}, \mathrm{H}-$ $1^{\prime} \mathrm{B}$), 5.02 (dd, 1H, $J=1.7,4.5 \mathrm{~Hz}, \mathrm{H}-7$), 5.04 (d, $1 \mathrm{H}, J=15.4 \mathrm{~Hz}$, $\left.\mathrm{NCH}_{2}-\mathrm{A}\right), 6.33$ (dd, $\left.1 \mathrm{H}, J=1.7,5.9 \mathrm{~Hz}, \mathrm{H}-8\right), 6.43(\mathrm{~d}, 1 \mathrm{H}, J=5.9$ $\mathrm{Hz}, \mathrm{H}-9), 6.83$ ($\left.\mathrm{BB}^{\prime}, 2 \mathrm{H}, \mathrm{H}-\mathrm{Ph}\right), 7.12\left(\mathrm{AA}^{\prime}, 2 \mathrm{H}, \mathrm{H}-\mathrm{Ph}\right)$.

Anal. Calcd. for $\mathrm{C}_{20} \mathrm{H}_{23} \mathrm{NO}_{3}: \mathrm{C}, 73.85 ; \mathrm{H}, 7.08 ; \mathrm{N}, 4.31$. Found: C, 73.75; H, 7.12; N, 4.30.

4- N -Phenylamino- N -acryloyl-4-(2-furyl)butene-1 (27a).

Was isolated along with 28a (see Scheme 6). White crystals, yield $3.51 \mathrm{~g}(25 \%)$; mp $65.5-66.5^{\circ} \mathrm{C}$ (ethyl acetate-hexane); $R_{\mathrm{f}} 0.68$ (ethyl acetate-hexane, $1: 3$); ir: 1645 ($\mathrm{N}-\mathrm{C}=\mathrm{O}$ and $\mathrm{C}=\mathrm{C}) \mathrm{cm}^{-1} ; \mathrm{ms}: \mathrm{m} / \mathrm{z} \mathrm{M}^{+} 281$ (13), 238 (3), 226 (44), 172 (100), 161 (2), 148 (3), 135 (18), 117 (10), 107 (3), 91 (8), 77 (13), 65 (2), 55 (23), 39 (3), 27 (4); ${ }^{1} \mathrm{H} \mathrm{nmr}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta$ 1.79 (s, 3H, Me-2), 2.43 (dd, $1 \mathrm{H}, J_{3 \mathrm{~A}, 3 \mathrm{~B}}=14.7, J_{3 \mathrm{~B}, 4}=8.6 \mathrm{~Hz}, \mathrm{H}-$ $3 \mathrm{~B}), 2.54$ (dd, $1 \mathrm{H}, J_{3 \mathrm{~A}, 3 \mathrm{~B}}=14.7, J_{3 \mathrm{~A}, 4}=6.7 \mathrm{~Hz}, \mathrm{H}-3 \mathrm{~A}$), 4.80 (brs, $2 \mathrm{H}, \mathrm{H}-1 \mathrm{~B}), 4.85$ (brs, $2 \mathrm{H}, \mathrm{H}-1 \mathrm{~A}$), 5.48 (dd, $1 \mathrm{H}, J_{2^{\prime}, 1^{\prime} c i s}=10.3$, $\left.J_{1^{\prime} \text { cis, } 1^{\prime} \text { rans }}=2.0 \mathrm{~Hz}, \quad \mathrm{H}-1^{\prime} c i s\right), 5.81 \quad\left(\mathrm{dd}, \quad 1 \mathrm{H}, J_{2^{\prime}, 1^{\prime} \text { 'cis }}=10.3\right.$, $\left.J_{2^{\prime}, 1^{\prime} \text { trans }}=16.8 \mathrm{~Hz}, \mathrm{H}-2^{\prime}\right), 6.08$ (brd, $\left.1 \mathrm{H}, J_{\beta, \beta}=3.2 \mathrm{~Hz}, \mathrm{H}-\beta^{\prime}\right), 6.25$ (dd, $\left.\quad 1 \mathrm{H}, \quad J_{\beta, \beta}=3.2, \quad J_{\alpha, \beta}=1.7 \mathrm{~Hz}, \quad \mathrm{H}-\beta\right), 6.39(\mathrm{dd}, \quad 1 \mathrm{H}$, $J_{1^{\prime} \text { cis, } 1^{\prime} \text { rrans }}=2.0, J_{1^{\prime} \text { rans }, 2}=16.8 \mathrm{~Hz}, \mathrm{H}-1^{\prime}$ trans), 6.43 (dd, 1 H , $\left.J_{4,3 \mathrm{~A}}=6.7, J_{4,3 \mathrm{~B}}=8.6 \mathrm{~Hz}, \mathrm{H}-4\right), 7.20-7.32$ (m, 5H, H-Ph), 7.37 (dd, $\left.1 \mathrm{H}, J_{\alpha, \beta}=1.7, J_{\alpha, \beta}=0.7 \mathrm{~Hz}, \mathrm{H}-\alpha\right)$.

Anal. Calcd. for $\mathrm{C}_{18} \mathrm{H}_{19} \mathrm{NO}_{2}$: C, 76.84; H, 6.81; N, 4.98. Found: C, 76.79; H, 6.75; N, 4.90.
Compounds 9A and 9B were synthesized earlier [3].
2-Methallyl-3-aza-3-benzyl-10-oxatricyclo[5.2.1.0 ${ }^{1,5}$]dec-8-en (29) and N-Allyl-2-methyl-4- N-benzylamino-4-(2'-furyl)but-1en (30).

Potash $(7.38 \mathrm{~g}, 0.054 \mathrm{~mol})$ and allylbromide $(3.72 \mathrm{~mL}, 0.043$ $\mathrm{mol})$ were added to a solution of amine $\mathbf{1 2 a}(8.59 \mathrm{~g}, 0.036 \mathrm{~mol})$ in 80 mL of acetone. The reaction mixture was refluxed for 3 h (TLC monitoring). Inorganic precipitate was filtered off and washed with acetone $(2 \times 60 \mathrm{~mL})$. The residue obtained after acetone evaporation was refluxed in toluene (50 mL) for 4 h (TLC monitoring). Toluene was removed in vacuo, products 29, 30 were separated by column chromatography on $\mathrm{Al}_{2} \mathrm{O}_{3}(2.5 \times$ 25 cm , using hexane as eluent). In case of N-allylderivative 30 the eluent was removed under reduced pressure at room temperature.

Compound 29.

Colourless viscous oil; yield $46 \%(4.65 \mathrm{~g}) ; R_{\mathrm{f}} 0.37$ (ethyl acetate-hexane, $1: 100$); ir: $1640(\mathrm{C}=\mathrm{C}) \mathrm{cm}^{-1} ; \mathrm{ms}: \mathrm{m} / \mathrm{z}[\mathrm{M}-55]^{+}$ 226 (93), 131 (3), 117 (2), 91 (100), 81 (3), 65 (6), 41 (9), 28 (4); ${ }^{1} \mathrm{H} \mathrm{nmr}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 1.28\left(\mathrm{dd}, 1 \mathrm{H}, J_{6 \text { exo,6endo }}=11.4\right.$, $J_{6 \text { endo }, 5}=7.5 \mathrm{~Hz}, \mathrm{H}-6$ endo $), 1.67$ (ddd, $1 \mathrm{H}, J_{6 \text { exo,6endo }}=11.4$,
$J_{6 \text { exo }, 7}=4.4, J_{6 e x o, 5}=3.0 \mathrm{~Hz}, \mathrm{H}-6$ exo $), 1.83\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Me}-2^{\prime}\right), 1.97$ (dddd, $1 \mathrm{H}, J_{4 a x, 5}=10.5, J_{4 e q v, 5}=6.6, J_{6 \text { endo }, 5}=7.5, J_{6 e x o, 5}=3.0 \mathrm{~Hz}, \mathrm{H}-$ 5endo), 2.09 (dd, 1H, $\left.J_{4 e q v, 4 a x}=8.5, J_{4 a x, 5}=10.5 \mathrm{~Hz}, \mathrm{H}-4 a x\right), 2.43$ $\left(\mathrm{dd}, 1 \mathrm{H}, J_{\mathrm{A}, \mathrm{B}}=15.3, J_{2,3^{\prime} \mathrm{A}}=5.8 \mathrm{~Hz}, \mathrm{H}-3^{\prime} \mathrm{A}\right), 2.48(\mathrm{dd}, 1 \mathrm{H}$, $\left.J_{\mathrm{A}, \mathrm{B}}=15.3, J_{2,3^{\prime} \mathrm{B}}=8.1 \mathrm{~Hz}, \mathrm{H}-3^{\prime} \mathrm{B}\right), 3.11\left(\mathrm{dd}, 1 \mathrm{H}, J_{4 e q v, 4 a x}=8.5\right.$, $\left.J_{4 e q v, 5}=6.6 \mathrm{~Hz}, \mathrm{H}-4 e q v\right), 3.11\left(\mathrm{dd}, 1 \mathrm{H}, J_{2,3^{\prime} \mathrm{B}}=8.1, J_{2,3^{\prime} \mathrm{A}}=5.8 \mathrm{~Hz}, \mathrm{H}-\right.$ 2), $3.47\left(\mathrm{~d}, 1 \mathrm{H}, J_{\mathrm{A}, \mathrm{B}}=12.8 \mathrm{~Hz}, \mathrm{NCH}_{2}-\mathrm{B}\right), 4.05\left(\mathrm{~d}, 1 \mathrm{H}, J_{\mathrm{A}, \mathrm{B}}=12.8\right.$ $\left.\mathrm{Hz}, \mathrm{NCH}_{2}-\mathrm{A}\right), 4.88\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-1^{\prime} \mathrm{A}\right), 4.91\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-1^{\prime} \mathrm{B}\right), 4.98$ $\left(\mathrm{dd}, 1 \mathrm{H}, J_{7,6 \text { exo }}=4.4, J_{8,7}=1.7 \mathrm{~Hz}, \mathrm{H}-7\right), 6.23\left(\mathrm{dd}, 1 \mathrm{H}, J_{8,9}=5.9\right.$, $\left.J_{8,7}=1.7 \mathrm{~Hz}, \mathrm{H}-8\right), 6.43\left(\mathrm{~d}, 1 \mathrm{H}, J_{8,9}=5.9 \mathrm{~Hz}, \mathrm{H}-9\right), 7.24-7.33(\mathrm{~m}$, $5 \mathrm{H}, \mathrm{H}-\mathrm{Ph}$).

Anal. Calcd. for $\mathrm{C}_{19} \mathrm{H}_{23} \mathrm{NO}: \mathrm{C}, 81.10 ; \mathrm{H}, 8.24 ; \mathrm{N}, 4.98$. Found: C, 81.23; H, 8.39; N, 5.11.

Compound 30.

Colourless oil, yield $10 \% \quad(1.01 \mathrm{~g}) ; \quad R_{\mathrm{f}} 0.78$ (ethyl acetate-hexane, $1: 100$); ir: $1645(\mathrm{C}=\mathrm{C}) \mathrm{cm}^{-1} ; \mathrm{ms}: \mathrm{m} / \mathrm{z}[\mathrm{M}-55]^{+}$ 226 (100), 131 (3), 91 (64), 68 (3), 41 (4); ${ }^{1} \mathrm{H} \mathrm{nmr} \mathrm{(} \mathrm{CDCl}_{3}, 400$ $\mathrm{MHz}) \delta 1.64(\mathrm{brs}, 3 \mathrm{H}, \mathrm{Me}-2), 2.55\left(\mathrm{dd}, 1 \mathrm{H}, J_{\mathrm{A}, \mathrm{B}}=14.1, J_{3 \mathrm{~B}, 4}=7.7\right.$ $\mathrm{Hz}, \mathrm{H}-3 \mathrm{~B}), 2.67\left(\mathrm{ddd}, 1 \mathrm{H}, J_{\mathrm{A}, \mathrm{B}}=14.1, J_{3 \mathrm{~A}, 4}=7.7, J_{3 \mathrm{~A}, 1}=0.7 \mathrm{~Hz}, \mathrm{H}-\right.$ $3 \mathrm{~A}), 2.80\left(\mathrm{dd}, 1 \mathrm{H}, J_{3^{\prime} \mathrm{A}, 3^{\prime} \mathrm{B}}=14.2, J_{3^{\prime} \mathrm{B}, 2^{\prime}}=8.0 \mathrm{~Hz}, \mathrm{H}-3^{\prime} \mathrm{B}\right), 3.19(\mathrm{~d}$, $\left.1 \mathrm{H}, J_{\mathrm{A}, \mathrm{B}}=13.9 \mathrm{~Hz}, \mathrm{NCH}_{2} \mathrm{Ph}-\mathrm{B}\right), 3.29\left(\mathrm{ddt}, 1 \mathrm{H}, J_{3^{\prime} \mathrm{A}, 3^{\prime} \mathrm{B}}=14.2\right.$, $\left.J_{3^{\prime} \mathrm{A}, 2^{\prime}}=4.7, J_{3^{\prime} \mathrm{A}, 1^{\prime}}=1.6 \mathrm{~Hz}, \mathrm{H}-3^{\prime} \mathrm{A}\right), 4.05\left(\mathrm{t}, 1 \mathrm{H}, J_{4,3}=7.7 \mathrm{~Hz}, \mathrm{H}-4\right)$, $3.92\left(\mathrm{~d}, 1 \mathrm{H}, J_{\mathrm{A}, \mathrm{B}}=13.9 \mathrm{~Hz}, \mathrm{NCH}_{2} \mathrm{Ph}-\mathrm{A}\right), 4.69\left(\mathrm{dq}, 1 \mathrm{H}, J_{1,1}=1.0\right.$, $J_{1 \text { trans }, \mathrm{Me}}=2.0 \mathrm{~Hz}, \mathrm{H}-1$ trans $), 4.76$ (brs, $1 \mathrm{H}, J_{1,1}=1.0 \mathrm{~Hz}, \mathrm{H}-1$ cis), 5.12 (ddd, $\left.1 \mathrm{H}, J_{2^{\prime}, 1^{\prime} c i s}=10.2, J_{1^{\prime} c i s, 3^{\prime} \mathrm{A}}=1.6, J_{1^{\prime}, 1^{\prime}}=0.9 \mathrm{~Hz}, \mathrm{H}-1^{\prime} c i s\right)$, 5.12 (ddd, $1 \mathrm{H}, J_{2^{\prime}, 1^{\prime} \text { trans }}=17.3, J_{1^{\prime} \text { trans }, 3^{\prime} \mathrm{A}}=1.6, J_{1^{\prime}, 1^{\prime}}=0.9 \mathrm{~Hz}, \mathrm{H}-$ 1^{\prime} trans), 5.81 (dddd, $1 \mathrm{H}, J_{2^{\prime}, 1^{\prime} \text { 'trans }}=17.3, J_{2^{\prime}, 1^{\prime} \text { cis }}=10.2, J_{2^{\prime}, 3^{\prime} \mathrm{B}}=8.0$, $\left.J_{2^{\prime}, 3^{\prime} \mathrm{A}}=4.7 \mathrm{~Hz}, \mathrm{H}-2^{\prime}\right), 6.15\left(\mathrm{dd}, 1 \mathrm{H}, J_{\beta, \beta^{\prime}}=3.1, J_{\alpha, \beta^{\prime}}=0.9 \mathrm{~Hz}, \mathrm{H}-\beta^{\prime}\right)$, $6.36\left(\mathrm{dd}, 1 \mathrm{H}, J_{\beta, \beta}=3.1, J_{\alpha, \beta}=1.8 \mathrm{~Hz}, \mathrm{H}-\beta\right), 7.22-7.39(\mathrm{~m}, 5 \mathrm{H}, \mathrm{H}-$ $\mathrm{Ph}), 7.42\left(\mathrm{dd}, 1 \mathrm{H}, J_{\alpha, \beta}=1.8, J_{\alpha, \beta}=0.9 \mathrm{~Hz}, \mathrm{H}-\alpha\right)$.

Anal. Calcd. for $\mathrm{C}_{19} \mathrm{H}_{23} \mathrm{NO}: \mathrm{C}, 81.10 ; \mathrm{H}, 8.24 ; \mathrm{N}, 4.98$. Found: C, 81.20; H, 8.21; N, 4.99.

2-Methallyl-3-aza-3-phenyl-10-oxatricyclo[5.2.1.0 ${ }^{1,5}$]dec-8-en (31).
Sodium iodide dihydrate $(7.66 \mathrm{~g}, 0.041 \mathrm{~mol})$ was added to a solution of allylbromide ($3.5 \mathrm{~mL}, 0.04 \mathrm{~mol}$) in 60 mL of acetone and the reaction mixture was stirred for 1 h at $22{ }^{\circ} \mathrm{C}$. Then potash ($7.33 \mathrm{~g}, 0.053 \mathrm{~mol}$) and amine 11a ($3.0 \mathrm{~g}, 0.013 \mathrm{~mol}$) were added and the reaction mass was refluxed for 18 h until the disappearance of the starting material spot (TLC control). The inorganic precipitate was filtered off and washed with acetone (2 $\times 50 \mathrm{~mL}$). The residue obtained after acetone evaporation was purified by column chromatography on $\mathrm{Al}_{2} \mathrm{O}_{3}(4.5 \times 30 \mathrm{~cm}$, using hexane as eluent).

Compound 31.

Viscous yellow oil; yield 48% (1.67 g); ratio of isomers 10/1; $R_{\mathrm{f}} 0.41$ (ethyl acetate-hexane, 1:50); ir: $1640(\mathrm{C}=\mathrm{C}) \mathrm{cm}^{-1}$; ms: $\mathrm{m} / \mathrm{z} \mathrm{M}{ }^{+} 267$ (18), 212 (100), 171 (16), 144 (10), 115 (7), 104 (34), 91 (11), 77 (49), 65 (9), 51 (20), 39 (29); ${ }^{1} \mathrm{H} \mathrm{nmr}\left(\mathrm{CDCl}_{3}\right.$, $400 \mathrm{MHz}) \delta 1.55\left(\mathrm{dd}, 1 \mathrm{H}, J_{6 \text { exo. } 6 \text { endo }}=11.5, J_{6 \text { endo }, 5}=7.5 \mathrm{~Hz}, \mathrm{H}-\right.$ 6 endo), 1.90 (ddd, $1 \mathrm{H}, J_{6 \text { exo.,6endo }}=11.5, J_{6 \text { exo }, 7}=4.5, J_{6 \text { exo }, 5}=2.5 \mathrm{~Hz}$, H-6exo), 1.90 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{Me}-2^{\prime}$), 2.25 (dd, $1 \mathrm{H}, J_{\mathrm{A}^{\prime}, \mathrm{B}}=17.3$, $\left.J_{2,3} \mathrm{~B}=10.8 \mathrm{~Hz}, \quad \mathrm{H}-3^{\prime} \mathrm{B}\right), \quad 2.34 \quad\left(\mathrm{ddt}, \quad 1 \mathrm{H}, \quad J_{4 a x, 5}=J_{4 e q, 5}=8.7\right.$, $J_{\text {6endo }, 5}=7.5, J_{6 e x o, 5}=2.5 \mathrm{~Hz}, \mathrm{H}-5$ endo), 2.69 (brdd, $1 \mathrm{H}, J_{\mathrm{A}^{\prime}, \mathrm{B}}=17.3$, $\left.J_{2,3^{\prime} \mathrm{A}}=1.8 \mathrm{~Hz}, \mathrm{H}-3^{\prime} \mathrm{A}\right), 2.92\left(\mathrm{t}, 1 \mathrm{H}, J_{4 e q,, 4 a x}=J_{4 a r, 5}=8.7 \mathrm{~Hz}, \mathrm{H}-4 a x\right)$, $3.87\left(\mathrm{t}, 1 \mathrm{H}, J_{4 e q v, 4 a x}=J_{4 e q, 5}=8.7 \mathrm{~Hz}, \mathrm{H}-4 e q v\right), 4.24(\mathrm{dd}, 1 \mathrm{H}$, $J_{2,3^{\prime} \mathrm{B}}=10.8, J_{2,3^{\prime} \mathrm{A}}=1.8 \mathrm{~Hz}, \mathrm{H}-2$), 4.94 (brs, $1 \mathrm{H}, \mathrm{H}-1^{\prime} \mathrm{A}$), 5.00 (brs, $1 \mathrm{H}, \mathrm{H}-1$ 'B), 5.03 (dd, $1 \mathrm{H}, J_{7,6 e x}=4.5, J_{8,7}=1.7 \mathrm{~Hz}, \mathrm{H}-7$), 6.38 (dd, $\left.1 \mathrm{H}, J_{8,9}=5.9, J_{8,7}=1.7 \mathrm{~Hz}, \mathrm{H}-8\right), 6.50\left(\mathrm{~d}, 1 \mathrm{H}, J_{8,9}=5.9 \mathrm{~Hz}, \mathrm{H}-9\right)$,
$6.59\left(\mathrm{~d}, 2 \mathrm{H}, J_{m, o}=7.8 \mathrm{~Hz}, \mathrm{H}-\mathrm{Ph}\right.$ ortho $), 6.70\left(\mathrm{t}, 1 \mathrm{H}, J_{m, p}=7.3 \mathrm{~Hz}\right.$, H-Phpara), 7.25 (dd, 2H, $\left.J_{m, o}=7.8, J_{m, p}=7.3 \mathrm{~Hz}, \mathrm{H}-\mathrm{Ph} m e t h a\right)$.

Anal. Calcd. for $\mathrm{C}_{18} \mathrm{H}_{21} \mathrm{NO}: \mathrm{C}, 81.86 ; \mathrm{H}, 7.92 ; \mathrm{N}, 5.24$. Found: C, 81.81; H, 7.94; N, 5.33.

Isoindolo[2,1-a]quinolines 32a-c and Isoindolo[2,1-b][2]benzazepines 33a-c, 34b,c.
Typical Procedure.
A mixture of corresponding adduct $28(0.01 \mathrm{~mol})$ and 30 mL of PPA was stirred for $1-2 \mathrm{~h}$ (TLC monitoring) at $90-110^{\circ} \mathrm{C}$ (TLC monitoring). At the end of the reaction, the mixture was cooled and diluted with water $(100 \mathrm{~mL})$. After that four $60-\mathrm{mL}$ extractions with chloroform were performed. The organic layers were combined, dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated. The resulting residue was purified by chromatography on $\mathrm{Al}_{2} \mathrm{O}_{3}(2.5 \times 20 \mathrm{~cm}$, using hexane/ethyl acetate, $5: 1$ as eluent) to obtain the products $\mathbf{3 2 a} \mathbf{- c}, \mathbf{3 3 a}$ as white crystals. In case of adduct 28e cyclization the obtained isomeric mixture $\mathbf{(~} \mathbf{3 3 b} \mathbf{3 4 b}=1 / 3$) was three times recrystallized (hexane-ethyl acetate) to isolate the desired product $\mathbf{3 4 b}$. The mother solution contained the isomeric mixture $\mathbf{3 3 b} / \mathbf{3 4 b}$ in ratio $1 / 3.5$.

5,5-Dimethyl-5,6,6a,11-tetrahydro-11-oxoisoindolo[2,1-a]quinoline (32a).

White crystals, yield 1.60 g (61%); mp $118-119{ }^{\circ} \mathrm{C}$ (hexane-ethyl acetate); $R_{\mathrm{f}} 0.66$ (ethyl acetate-hexane, $2: 1$); ir: 1675 ($\mathrm{N}-\mathrm{C}=\mathrm{O}$) $\mathrm{cm}^{-1} ; \mathrm{ms}: \mathrm{m} / \mathrm{z} \mathrm{M}^{+} 263$ (47), 248 (100), 232 (13), 222 (5), 204 (7), 115 (11), 91 (7), 77 (8), 39 (3); ${ }^{1} \mathrm{H} \mathrm{nmr} \mathrm{(} \mathrm{CDCl}_{3}$, $400 \mathrm{MHz}) \delta 1.41(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Me}-5), 1.49(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Me}-5), 1.63(\mathrm{dd}$, $1 \mathrm{H}, J=12.9,13.1 \mathrm{~Hz}, \mathrm{H}-6 a x), 2.29(\mathrm{dd}, 1 \mathrm{H}, J=2.7,13.1 \mathrm{~Hz}, \mathrm{H}-$ $6 e q), 4.81$ (dd, $1 \mathrm{H}, J=2.7,12.9 \mathrm{~Hz}, \mathrm{H}-6 \mathrm{a}), 7.14$ (dt, $1 \mathrm{H}, J=1.3$, $7.5 \mathrm{~Hz}, \mathrm{H}-3), 7.29(\mathrm{dt}, 1 \mathrm{H}, J=1.5,7.5 \mathrm{~Hz}, \mathrm{H}-2), 7.41$ (dd, 1 H , $J=1.5,7.6 \mathrm{~Hz}, \mathrm{H}-4), 7.48-7.52(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-7$ and H-9), 7.60 (dt, $1 \mathrm{H}, J=1.2,7.4 \mathrm{~Hz}, \mathrm{H}-8), 7.94$ (dd, $1 \mathrm{H}, J=1.2,8.3 \mathrm{~Hz}, \mathrm{H}-10)$, $8.50(\mathrm{dt}, 1 \mathrm{H}, J=1.3,7.5 \mathrm{~Hz}, \mathrm{H}-1) ;{ }^{13} \mathrm{C} \mathrm{nmr}\left(\mathrm{CDCl}_{3}, 100.6 \mathrm{MHz}\right)$ $\delta 165.6(\mathrm{C}=\mathrm{O}), 144.4$ (s$), 134.9(\mathrm{~s}), 134.5$ (s), 132.5 (s), 131.8 (d), 128.2 (d), 126.6 (d), 126.5 (d), 124.0 (d), 123.9 (d), 121.6 (d), 120.3 (d), 55.4 (d, C-6a), 43.4 (t, C-6), 33.4 (s, C-5), 32.1 (q, $\mathrm{Me}-5$), 30.8 ($\mathrm{q}, \mathrm{Me}-5$).

Anal. Calcd. for $\mathrm{C}_{18} \mathrm{H}_{17} \mathrm{NO}: \mathrm{C}, 82.13 ; \mathrm{H}, 6.46 ; \mathrm{N}, 5.32$. Found: C, 82.20; H, 6.48; N, 5.39.

3,5,5-Trimethyl-5,6,6a,11-tetrahydro-11-oxoisoindolo[2,1-a]quinoline (32b).

White crystals, yield 1.94 g (70%); mp $187.5-189{ }^{\circ} \mathrm{C}$ (hexane-ethyl acetate); $R_{\mathrm{f}} 0.58$ (ethyl acetate-hexane, $3: 1$); ir: 1685 ($\mathrm{N}-\mathrm{C}=\mathrm{O}$) cm^{-1}; ms: m/z M ${ }^{+} 277$ (54), 262 (100), 247 (21), 232 (16), 218 (5), 124 (5), 108 (6), 102 (4), 77 (6), 51 (2); ${ }^{1} \mathrm{H}$ $\mathrm{nmr}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 1.40(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Me}-5), 1.48(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Me}-$ $5), 1.61(\mathrm{dd}, 1 \mathrm{H}, J=12.6,13.2 \mathrm{~Hz}, \mathrm{H}-6 \mathrm{ax}), 2.28(\mathrm{dd}, 1 \mathrm{H}, J=1.6$, $13.2 \mathrm{~Hz}, \mathrm{H}-6 e q), 2.35$ (s, 3H, Me-3), 4.79 (dd, $1 \mathrm{H}, J=1.6,12.6$ $\mathrm{Hz}, \mathrm{H}-6 \mathrm{a}), 7.10(\mathrm{dd}, 1 \mathrm{H}, J=1.5,8.3 \mathrm{~Hz}, \mathrm{H}-2), 7.20(\mathrm{~d}, 1 \mathrm{H}, J=1.5$ $\mathrm{Hz}, \mathrm{H}-4), 7.48-7.52(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-7$ and $\mathrm{H}-9), 7.58(\mathrm{dt}, 1 \mathrm{H}, J=1.2$, $7.9 \mathrm{~Hz}, \mathrm{H}-8), 7.93$ (dd, $1 \mathrm{H}, J=1.2,7.9 \mathrm{~Hz}, \mathrm{H}-10), 8.38$ (d, 1 H , $J=8.3 \mathrm{~Hz}, \mathrm{H}-1$).

Anal. Calcd. for $\mathrm{C}_{19} \mathrm{H}_{19} \mathrm{NO}: \mathrm{C}, 82.31 ; \mathrm{H}, 6.86 ; \mathrm{N}, 5.05$. Found: C, 82.29; H, 6.82; N, 5.10.

5,5-Dimethyl-5,6,6a,11-tetrahydro-3-methoxy-11-oxoisoindolo-[2,1-a]quinoline (32c).

White crystals, yield 1.87 g (64%); mp $146.5-148{ }^{\circ} \mathrm{C}$ (hexane-ethyl acetate); $R_{\mathrm{f}} 0.67$ (ethyl acetate-hexane, $1: 1$); ir: 1680 ($\mathrm{N}-\mathrm{C}=\mathrm{O}$) cm^{-1}; ms: m/z M ${ }^{+} 293$ (72), 278 (100), 263 (20), 248 (6), 235 (10), 220 (5), 207 (8), 191 (4), 146 (3), 131 (3), 115 (3), 103 (5), 89 (4), 77 (8), 63 (3), 51 (2); ${ }^{1} \mathrm{H} \mathrm{nmr} \mathrm{(} \mathrm{CDCl}_{3}, 400$ $\mathrm{MHz}) \delta 1.40(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Me}-5), 1.48(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Me}-5), 1.62(\mathrm{dd}, 1 \mathrm{H}$, $J=12.9,13.3 \mathrm{~Hz}, \mathrm{H}-6 a x), 2.28$ (dd, $1 \mathrm{H}, J=2.6,13.3 \mathrm{~Hz}, \mathrm{H}-6 e q$), 3.83 (s, 3H, OMe-3), 4.79 (dd, $1 \mathrm{H}, J=2.6,12.9 \mathrm{~Hz}, \mathrm{H}-6 \mathrm{a}), 6.86$ (dd, $1 \mathrm{H}, J=2.9,9.0 \mathrm{~Hz}, \mathrm{H}-2), 6.94(\mathrm{~d}, 1 \mathrm{H}, J=2.9 \mathrm{~Hz}, \mathrm{H}-4)$, $7.48-7.51(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-7$ and H-9), $7.59(\mathrm{dt}, 1 \mathrm{H}, J=1.2,7.9 \mathrm{~Hz}, \mathrm{H}-$ 8), 7.92 (dd, $1 \mathrm{H}, J=1.2,7.9 \mathrm{~Hz}, \mathrm{H}-10), 8.43(\mathrm{~d}, 1 \mathrm{H}, J=9.0 \mathrm{~Hz}$, H-1).

Anal. Calcd. for $\mathrm{C}_{19} \mathrm{H}_{19} \mathrm{NO}_{2}: \mathrm{C}, 77.82 ; \mathrm{H}, 6.48 ; \mathrm{N}, 4.78$. Found: C, 77.78; H, 6.45; N, 4.79.

13,13-Dimethyl-7-oxo-5,11b,12,13-tetrahydro-7 H -isoindolo-[2,1-b][2]benzazepine (33a).

White crystals, yield $1.69 \mathrm{~g}(61 \%) ; \mathrm{mp} 106.5-108.5{ }^{\circ} \mathrm{C}$ (hexane-ethyl acetate); $R_{\mathrm{f}} 0.46$ (ethyl acetate-hexane, $1: 1$); ir: $1680(\mathrm{~N}-\mathrm{C}=\mathrm{O}) \mathrm{cm}^{-1} ; \mathrm{ms}: \mathrm{m} / \mathrm{z} \mathrm{M}^{+} 277$ (100), 262 (22), 234 (23), 221 (11), 193 (6), 145 (17), 132 (24), 129 (15), 115 (10), 103 (5), 91 (18), 77 (5); ${ }^{1} \mathrm{H} \mathrm{nmr}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 1.54(\mathrm{~s}, 3 \mathrm{H}$, $\mathrm{Me}-13), 1.61(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Me}-13), 1.59\left(\mathrm{dd}, 1 \mathrm{H}, J_{12 a x, 12 e q v}=14.1\right.$, $\left.J_{11 \mathrm{~b}, 12 a x}=12.0 \mathrm{~Hz}, \mathrm{H}-12 a x\right), 2.27 \quad\left(\mathrm{dd}, 1 \mathrm{H}, J_{12 a x, 12 e q v}=14.1\right.$, $\left.J_{11 \mathrm{~b}, 12 e q v}=3.2 \mathrm{~Hz}, \mathrm{H}-12 e q v\right), 4.70\left(\mathrm{~d}, 1 \mathrm{H}, J_{\mathrm{A}, \mathrm{B}}=15.5 \mathrm{~Hz}, \mathrm{H}-5 \mathrm{~B}\right)$, $4.91\left(\mathrm{dd}, 1 \mathrm{H}, J_{11 \mathrm{~b}, 12 a x}=12.0, J_{11 \mathrm{~b}, 12 e q v}=3.2 \mathrm{~Hz}, \mathrm{H}-11 \mathrm{~b}\right), 5.32(\mathrm{~d}, 1 \mathrm{H}$, $\left.J_{\mathrm{A}, \mathrm{B}}=15.5 \mathrm{~Hz}, \mathrm{H}-5 \mathrm{~A}\right), 7.19\left(\mathrm{dt}, 1 \mathrm{H}, J_{9,10}=J_{8,9}=7.7, J_{9,11}=1.0 \mathrm{~Hz}\right.$, $\mathrm{H}-9), 7.24\left(\mathrm{dd}, 1 \mathrm{H}, J_{10,11}=7.7, J_{9,11}=1.5 \mathrm{~Hz}, \mathrm{H}-11\right), 7.37-7.43(\mathrm{~m}$, $4 \mathrm{H}), 7.51\left(\mathrm{dt}, 1 \mathrm{H}, J_{9,10}=J_{10,11}=7.7, J_{8,10}=1.0 \mathrm{~Hz}, \mathrm{H}-10\right), 7.82(\mathrm{~d}$, $\left.1 \mathrm{H}, J_{8,9}=8.1 \mathrm{~Hz}, \mathrm{H}-8\right)$.

Anal. Calcd. for $\mathrm{C}_{19} \mathrm{H}_{19} \mathrm{NO}: \mathrm{C}, 82.31 ; \mathrm{H}, 6.86 ; \mathrm{N}, 5.05$. Found: C, 82.27; H, 6.81; N, 5.15.

2,13,13-Trimethyl-7-oxo-5,11b,12,13-tetrahydro-7 H -isoindolo-[2,1-b][2]benzazepine (33b) and 3,13,13-Trimethyl-7-oxo-5, $11 \mathrm{~b}, 12,13$-tetrahydro- 7 H -isoindolo[2,1-b][2]benzazepine (34b). Total yield of the isomers mixture 0.76 g (26%). Ratio of isomers $\mathbf{3 3 b} / \mathbf{3 4 b}=1 / 3$.

Compound 33b.

Was isolated along with 34b. ${ }^{1} \mathrm{H} \mathrm{nmr}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta$ $1.52(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Me}-13), 1.56\left(\mathrm{dd}, 1 \mathrm{H}, J_{12 a x, 12 \text { eqv }}=14.1, J_{11 \mathrm{~b}, 12 a x}=12.0\right.$ $\mathrm{Hz}, \mathrm{H}-12 a x), 1.58(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Me}-13), 2.24\left(\mathrm{dd}, 1 \mathrm{H}, J_{12 a x, 12 \text { eqv }}=14.1\right.$, $\left.J_{11 \mathrm{~b}, 12 e q v}=3.2 \mathrm{~Hz}, \mathrm{H}-12 e q v\right), 2.30(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Me}-2), 4.62(\mathrm{~d}, 1 \mathrm{H}$, $\left.J_{\mathrm{A}, \mathrm{B}}=15.5 \mathrm{~Hz}, \mathrm{H}-5 \mathrm{~B}\right), 4.87\left(\mathrm{dd}, 1 \mathrm{H}, J_{11 \mathrm{~b}, 12 a x}=12.0, J_{11 \mathrm{~b}, 12 e q v}=3.2\right.$ $\mathrm{Hz}, \mathrm{H}-11 \mathrm{~b}), 5.27\left(\mathrm{~d}, 1 \mathrm{H}, J_{\mathrm{A}, \mathrm{B}}=15.5 \mathrm{~Hz}, \mathrm{H}-5 \mathrm{~A}\right), 6.98(\mathrm{dd}, 1 \mathrm{H}$, $\left.J_{3,4}=7.6, J_{1,3}=1.5 \mathrm{~Hz}, \mathrm{H}-3\right), 7.17\left(\mathrm{~d}, 1 \mathrm{H}, J_{1,3}=1.5 \mathrm{~Hz}, \mathrm{H}-1\right), 7.28$ $\left(\mathrm{d}, 1 \mathrm{H}, J_{4,3}=7.6 \mathrm{~Hz}, \mathrm{H}-4\right), 7.39\left(\mathrm{~d}, 1 \mathrm{H}, J_{10,11}=7.5 \mathrm{~Hz}, \mathrm{H}-11\right), 7.39$ $\left(\mathrm{t}, 1 \mathrm{H}, J_{8,9}=J_{10,9}=7.5 \mathrm{~Hz}, \mathrm{H}-9\right), 7.49\left(\mathrm{dt}, 1 \mathrm{H}, J_{10,9}=J_{10,11}=7.5\right.$, $\left.J_{8,10}=1.5 \mathrm{~Hz}, \mathrm{H}-10\right), 7.78\left(\mathrm{dd}, 1 \mathrm{H}, J_{8,9}=7.5, J_{8,10}=1.5 \mathrm{~Hz}, \mathrm{H}-8\right) ;$ ${ }^{13} \mathrm{C} \operatorname{nmr}\left(\mathrm{CDCl}_{3}, 100.6 \mathrm{MHz}\right) \delta 166.4(\mathrm{~s}, \mathrm{~N}-\mathrm{C}=\mathrm{O}), 146.4$ (s), 145.7 (s), 137.2 (s), 133.0 (s), 131.8 (s), 131.1 (d), 131.0 (d), 127.9 (d), 127.1 (d), 127.0 (d), 123.6 (d), 121.4 (d), 59.3 (d, C11b), 47.1 (t, C-12), 46.1 (t, C-5), 37.5 (s, C-13), 32.6 ($\mathrm{q}, \mathrm{Me}-$ 13), 25.7 ($\mathrm{q}, \mathrm{Me}-13$), 21.2 ($\mathrm{q}, \mathrm{Me}-2$).

Compound 34b.

White crystals, yield 0.38 g (13\%); mp $150.5-152{ }^{\circ} \mathrm{C}$ (hexane-ethyl acetate); $R_{\mathrm{f}} 0.57$ (ethyl acetate-hexane, 1:1); ir: 1675 $(\mathrm{N}-\mathrm{C}=\mathrm{O}) \mathrm{cm}^{-1} ; \mathrm{ms}: \mathrm{m} / \mathrm{z} \mathrm{M}^{+} 291$ (100), 276 (31), 248 (55), 235 (13), 220 (10), 207 (8), 186 (14), 159 (26), 146 (33), 129 (30), 115 (22),

105 (29), 91 (14), 77 (19), 63 (5), 51 (5), 41 (4); ${ }^{1} \mathrm{H} \mathrm{nmr}\left(\mathrm{CDCl}_{3}, 400\right.$ $\mathrm{MHz}) \delta 1.50(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Me}-13), 1.57(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Me}-13), 1.54(\mathrm{dd}, 1 \mathrm{H}$, $\left.J_{12 a r, 12 e q v}=14.1, \quad J_{11 b, 12 a x}=12.0 \mathrm{~Hz}, \quad \mathrm{H}-12 a x\right), \quad 2.24 \quad(\mathrm{dd}, \quad 1 \mathrm{H}$, $\left.J_{12 a r, 12 e q v}=14.1, J_{11 \mathrm{~b}, 12 e q v}=3.2 \mathrm{~Hz}, \mathrm{H}-12 e q v\right), 2.29(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Me}-3), 4.64(\mathrm{~d}$, $\left.1 \mathrm{H}, J_{\mathrm{A}, \mathrm{B}}=15.5 \mathrm{~Hz}, \mathrm{H}-5 \mathrm{~B}\right), 4.88\left(\mathrm{dd}, 1 \mathrm{H}, J_{11 \mathrm{~b}, 12 a x}=12.0, J_{11 \mathrm{~b}, 12 e q v}=3.2 \mathrm{~Hz}\right.$, $\mathrm{H}-11 \mathrm{~b}$), 5.25 (d, $1 \mathrm{H}, J_{\mathrm{A}, \mathrm{B}}=15.5 \mathrm{~Hz}, \mathrm{H}-5 \mathrm{~A}$), 7.03 (dd, $1 \mathrm{H}, J_{1,2}=8.0$, $\left.J_{2,4}=2.0 \mathrm{~Hz}, \mathrm{H}-2\right), 7.22\left(\mathrm{~d}, 1 \mathrm{H}, J_{2,4}=2.0 \mathrm{~Hz}, \mathrm{H}-4\right), 7.25(\mathrm{~d}, 1 \mathrm{H}$, $\left.J_{1,2}=8.0 \mathrm{~Hz}, \mathrm{H}-1\right), 7.39\left(\mathrm{~d}, 1 \mathrm{H}, J_{10,11}=7.5 \mathrm{~Hz}, \mathrm{H}-11\right), 7.39(\mathrm{t}, 1 \mathrm{H}$, $\left.J_{8,9}=J_{10.9}=7.5 \mathrm{~Hz}, \mathrm{H}-9\right), 7.49\left(\mathrm{dt}, 1 \mathrm{H}, J_{10,9}=J_{10,11}=7.5, J_{8,10}=1.5 \mathrm{~Hz}, \mathrm{H}-\right.$ 10), $7.78\left(\mathrm{dd}, 1 \mathrm{H}, J_{8,9}=7.5, J_{8,10}=1.5 \mathrm{~Hz}, \mathrm{H}-8\right) ;{ }^{13} \mathrm{C} \mathrm{nmr}\left(\mathrm{CDCl}_{3}, 100.6\right.$ $\mathrm{MHz}) \delta 166.4$ (s, NCO), 145.7 (s), 143.6 (s), 136.0 (s$), 135.8$ (s), 131.7 (s), 131.7 (d, C-4, $J=155.5 \mathrm{~Hz}$), 131.0 (d, C-10, $J=161.0 \mathrm{~Hz}$), 128.1 (d, C-2, $J=155.5 \mathrm{~Hz}$), 127.8 (d, C-9, $J=161.5 \mathrm{~Hz}$), 126.1 (d, C$1, J=155.0 \mathrm{~Hz}), 123.5(\mathrm{~d}, \mathrm{C}-8, J=164.0 \mathrm{~Hz}), 121.4(\mathrm{~d}, \mathrm{C}-7, J=161.0$ $\mathrm{Hz}), 59.3$ (d, C-11b, $J=141.0 \mathrm{~Hz}), 47.1(\mathrm{t}, \mathrm{C}-12, J=128.5 \mathrm{~Hz}), 46.3$ (t, C-5, $J=137.0 \mathrm{~Hz}$), 37.2 (s, C-13), 32.6 (q, Me-13, $J=127.0 \mathrm{~Hz}$), 25.6 (q, Me-13, $J=126.0 \mathrm{~Hz}$), 20.3 (q, Me-3, $J=126.5 \mathrm{~Hz}$).

Anal. Calcd. for $\mathrm{C}_{20} \mathrm{H}_{21} \mathrm{NO}: \mathrm{C}, 82.47 ; \mathrm{H}, 7.22 ; \mathrm{N}, 4.81$. Found: C, 82.40; H, 6.99; N, 4.89.
13,13-Dimethyl-7-oxo-5,11b,12,13-tetrahydro-2-methoxy-7 H -isoindolo[2,1-b][2]benzazepine (33c) and 13,13-Dimethyl-7-oxo-5,11b,12,13-tetrahydro-3-methoxy-7 H -isoindolo[2,1-b][2]benzazepine ($\mathbf{3 4 c}$).

Slow-moving colorless oil, total yield of isomeric mixture $0.92 \mathrm{~g}(30 \%)$. Ratio of isomers $\mathbf{3 3 c} / \mathbf{3 4 c}=1 / 1 ; R_{\mathrm{f}} 0.60$ (ethyl acetate-hexane, 1:1); ir: $1680(\mathrm{~N}-\mathrm{C}=\mathrm{O}) \mathrm{cm}^{-1}$; ms: $\mathrm{m} / \mathrm{z} \mathrm{M}^{+} 307$ (100), 292 (20), 264 (57), 251 (15), 236 (5), 220 (4), 204 (4), 186 (32), 175 (27), 161 (30), 145 (20), 131 (20), 121 (35), 115 (20), 103 (22), 91 (24), 77 (26), 63 (7), 51 (7); ${ }^{1} \mathrm{H} \mathrm{nmr}$ isomer mixture spectrum $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 1.52(\mathrm{~s}, 6 \mathrm{H}, \mathrm{Me}-13)$, 1.56 (dd, 2H, $J=14.1,12.1 \mathrm{~Hz}, \mathrm{H}-12 a x$), 1.58 (s, $3 \mathrm{H}, \mathrm{Me}-13$), 1.60 (s, 3H, Me-13), 2.25 (dd, 2H, $J=14.1,3.3 \mathrm{~Hz}, \mathrm{H}-12$ eqv), 3.79 (s, 3H, OMe), 3.80 (s, 3H, OMe), 4.62 (d, $1 \mathrm{H}, J=15.5 \mathrm{~Hz}$, H-5), 4.67 (d, 1H, $J=15.5 \mathrm{~Hz}, \mathrm{H}-5$), 4.88 (dd, $1 \mathrm{H}, J=12.1,3.3$ $\mathrm{Hz}, \mathrm{H}-11 \mathrm{~b}$), 4.90 (dd, 1H, $J=12.1,3.3 \mathrm{~Hz}, \mathrm{H}-11 \mathrm{~b}$), 5.26 (d, 1H, $J=15.5 \mathrm{~Hz}, \mathrm{H}-5$), 5.28 (d, $1 \mathrm{H}, J=15.5 \mathrm{~Hz}, \mathrm{H}-5$), 6.69 (dd, 1 H , $J=8.7,2.9 \mathrm{~Hz}), 6.75(\mathrm{dd}, 1 \mathrm{H}, J=8.2,2.5 \mathrm{~Hz}), 6.96(\mathrm{~d}, 1 \mathrm{H}, J=2.5$ $\mathrm{Hz}), 6.98(\mathrm{~d}, 1 \mathrm{H}, J=2.9 \mathrm{~Hz}), 7.29(\mathrm{~d}, 1 \mathrm{H}, J=8.7 \mathrm{~Hz}), 7.34(\mathrm{~d}, 1 \mathrm{H}$, $J=8.2 \mathrm{~Hz}$), 7.40-7.44 (m, 2H), 7.49-7.54 (m, 2H), 7.81 (dd, 2H, $J=7.5,1.7 \mathrm{~Hz}$).

Anal. Calcd. for $\mathrm{C}_{20} \mathrm{H}_{21} \mathrm{NO}_{2}$: C, 78.15; $\mathrm{H}, 6.89 ; \mathrm{N}, 4.56$. Found: C, 78.25; H, 6.93; N, 4.63.

3-Chloroacetyl-13,13-dimethyl-7-oxo-5,11b,12,13-tetrahydro-7Hisoindolo $[2,1-b][2]$ benzazepine (35).

Chloroacetyl chloride ($1.73 \mathrm{~mL}, 0.022 \mathrm{~mol}$) was added to a stirred suspension of $\mathrm{AlCl}_{3}(4.81 \mathrm{~g}, 0.036 \mathrm{~mol})$ in dry dichloroethane $(60 \mathrm{~mL})$. After 0.5 h stirring at room temperature isoindolobenzazepine 33a $2.0 \mathrm{~g}(7.2 \mathrm{mmol})$ was added and resulting mass was stirred for 20 h at $24^{\circ} \mathrm{C}$. Then the reaction mixture was poured into 100 mL of ice water and basified with 25% aqueous ammonia solution to $\mathrm{pH} \sim 8-9$. Obtained precipitate was filtered off and washed with chloroform ($3 \times 50 \mathrm{~mL}$). The water phase was extracted with $\mathrm{CHCl}_{3}(3 \times 30 \mathrm{~mL})$. Organic phases were collected, washed with water ($1 \times 40 \mathrm{~mL}$), dried over MgSO_{4} and concentrated. The crude product was recrystallized from hexaneethyl acetate mixture to give desired chloroacetylderivative $\mathbf{3 5}$ as colorless crystals. Yield $1.78 \mathrm{~g}(70 \%) ; \mathrm{mp} 141.5-143.5^{\circ} \mathrm{C}$ with decomposition; $R_{\mathrm{f}} 0.13$ (ethyl acetate-hexane, $1: 2$); ir: 1675 $(\mathrm{N}-\mathrm{C}=\mathrm{O})$, and $1700(\mathrm{C}=\mathrm{O}) \mathrm{cm}^{-1}$; ms: m/z M $353\left({ }^{35} \mathrm{Cl}, 100\right), 338$
(18), 304 (21), 289 (4), 276 (8), 220 (4), 185 (6), 171 (16), 159 (11), 132 (25), 129 (9), 115 (7), 77 (5); ${ }^{1} \mathrm{H} \mathrm{nmr}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 1.57$ ($\mathrm{s}, 3 \mathrm{H}, \mathrm{Me}-13$), 1.63 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{Me}-13$), 1.58 (dd, $1 \mathrm{H}, J_{12 a x, 12 e q v}=14.2$, $\left.J_{11 b, 12 a x}=12.1 \mathrm{~Hz}, \mathrm{H}-12 a x\right), 2.30\left(\mathrm{dd}, 1 \mathrm{H}, J_{12 a x, 12 e q v}=14.2, J_{11 \mathrm{~b}, 12 e q v}=3.1\right.$ $\mathrm{Hz}, \mathrm{H}-12 e q v), 4.62\left(\mathrm{~d}, 1 \mathrm{H}, J_{\mathrm{A}, \mathrm{B}}=14.7 \mathrm{~Hz}, \mathrm{ClCH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}}\right), 4.72(\mathrm{~d}, 1 \mathrm{H}$, $\left.J_{\mathrm{A}, \mathrm{B}}=15.7 \mathrm{~Hz}, \mathrm{H}-5 \mathrm{~B}\right), 4.73\left(\mathrm{~d}, 1 \mathrm{H}, J_{\mathrm{A}, \mathrm{B}}=14.7 \mathrm{~Hz}, \mathrm{ClCH}_{\mathrm{A}} H_{\mathrm{B}}\right), 4.94$ (dd, $\left.1 \mathrm{H}, J_{11 \mathrm{~b}, 12 a x}=12.1, J_{11 \mathrm{~b}, 12 e q v}=3.1 \mathrm{~Hz}, \mathrm{H}-11 \mathrm{~b}\right), 5.40(\mathrm{~d}, 1 \mathrm{H}$, $\left.J_{\mathrm{A}, \mathrm{B}}=15.7 \mathrm{~Hz}, \mathrm{H}-5 \mathrm{~A}\right), 7.42\left(\mathrm{dd}, 1 \mathrm{H}, J_{10,11}=7.5, J_{9,11}=1.1 \mathrm{~Hz}, \mathrm{H}-11\right)$, $7.43\left(\mathrm{dt}, 1 \mathrm{H}, J_{9,11}=1.1, J_{9,10}=J_{8,9}=7.5 \mathrm{~Hz}, \mathrm{H}-9\right), 7.51(\mathrm{dd}, 1 \mathrm{H}$, $\left.J_{8,10}=1.1, J_{8,9}=7.5 \mathrm{~Hz}, \mathrm{H}-8\right), 7.53\left(\mathrm{dt}, 1 \mathrm{H}, J_{8,10}=1.1, J_{9,10}=J_{10,11}=7.5\right.$ $\mathrm{Hz}, \mathrm{H}-10), 7.80\left(\mathrm{~d}, 1 \mathrm{H}, J_{1,2}=8.3 \mathrm{~Hz}, \mathrm{H}-1\right), 7.83\left(\mathrm{dd}, 1 \mathrm{H}, J_{1,2}=8.3\right.$, $\left.J_{2,4}=2.0 \mathrm{~Hz}, \mathrm{H}-2\right), 7.97\left(\mathrm{~d}, 1 \mathrm{H}, J_{2,4}=2.0 \mathrm{~Hz}, \mathrm{H}-4\right)$.

Anal. Calcd. for $\mathrm{C}_{21} \mathrm{H}_{20} \mathrm{NO}_{2} \mathrm{Cl}$: C, $71.28 ; \mathrm{H}, 5.70 ; \mathrm{N}, 3.96 ; \mathrm{Cl}$, 10.02. Found: C, 71.17 ; H, 5.68; N, 4.03; Hal, 9.83.

3-Nitro-13,13-dimethyl-7-oxo-5,11b,12,13-tetrahydro-7 H -isoin-dolo[2,1-b][2]benzazepine (36).
Potassium nitrate $0.37 \mathrm{~g}(3.63 \mathrm{mmol})$ was added portion wise to a stirred solution of $33 \mathrm{a} 1.00 \mathrm{~g}(3.60 \mathrm{mmol})$ in 15 mL of conc. sulfuric acid at $-10^{\circ} \mathrm{C}$. Then the reaction mixture was stirred at $-5-0^{\circ} \mathrm{C}$ for 1 h and poured into 50 mL of ice water. The obtained precipitate was collected by filtration, washed with water to $\mathrm{pH} \sim 7$ and dried in air. Then the crude product was purified by recrystallization (i-PrOH-DMF) to give the desired nitroderivative 36 as white crystals. Yield $0.85 \mathrm{~g}(73 \%) ; \mathrm{mp} 191.5-192{ }^{\circ} \mathrm{C} ; R_{\mathrm{f}}$ 0.71 (ethyl acetate-chloroform, 1:1); ir: 1693 (N-C=O), 1344 (as. $-\mathrm{NO}_{2}$), and 1512 (s. $-\mathrm{NO}_{2}$) cm^{-1}; ms: m/z M ${ }^{+} 322$ (100), 305 (88), 293 (13), 275 (51), 263 (23), 233 (17), 217 (17), 204 (7), 191 (13), 158 (20), 146 (46), 115 (82), 89 (48), 77 (66), 51 (28), 39 (35); ${ }^{1} \mathrm{H} \mathrm{nmr}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 1.59(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Me}-13), 1.64$ (s, $3 \mathrm{H}, \mathrm{Me}-13), 1.60\left(\mathrm{dd}, 1 \mathrm{H}, J_{12 a x, 12 e q v}=14.3, J_{11 \mathrm{~b}, 12 a x}=12.0 \mathrm{~Hz}, \mathrm{H}-\right.$ $12 a x), 2.33$ (dd, $1 \mathrm{H}, J_{12 a r, 12 e q v}=14.3, J_{11 b, 12 e q v}=3.0 \mathrm{~Hz}, \mathrm{H}-12 e q v$), $4.74\left(\mathrm{~d}, 1 \mathrm{H}, J_{\mathrm{A}, \mathrm{B}}=15.8 \mathrm{~Hz}, \mathrm{H}-5 \mathrm{~A}\right), 4.96\left(\mathrm{dd}, 1 \mathrm{H}, J_{11 \mathrm{~b}, 12 a x}=12.0\right.$, $\left.J_{1 \mathrm{~b}, 12 \text { eqv }}=3.0 \mathrm{~Hz}, \mathrm{H}-11 \mathrm{~b}\right), 5.44\left(\mathrm{~d}, 1 \mathrm{H}, J_{\mathrm{A}, \mathrm{B}}=15.8 \mathrm{~Hz}, \mathrm{H}-5 \mathrm{~B}\right), 7.43$ (d, $1 \mathrm{H}, J_{10,11}=7.3 \mathrm{~Hz}, \mathrm{H}-11$), $7.44\left(\mathrm{t}, 1 \mathrm{H}, J_{9,10}=J_{8,9}=7.3 \mathrm{~Hz}, \mathrm{H}-9\right.$), $7.55\left(\mathrm{~d}, 1 \mathrm{H}, J_{8,9}=7.3 \mathrm{~Hz}, \mathrm{H}-8\right), 7.54\left(\mathrm{t}, 1 \mathrm{H}, J_{9,10}=J_{10,11}=7.3 \mathrm{~Hz}, \mathrm{H}-\right.$ $10), 7.82\left(\mathrm{~d}, 1 \mathrm{H}, J_{1,2}=8.3 \mathrm{~Hz}, \mathrm{H}-1\right), 8.07\left(\mathrm{dd}, 1 \mathrm{H}, J_{1,2}=8.3, J_{2,4}=2.4\right.$ $\mathrm{Hz}, \mathrm{H}-2), 8.28\left(\mathrm{~d}, 1 \mathrm{H}, J_{2,4}=2.0 \mathrm{~Hz}, \mathrm{H}-4\right)$.
Anal. Calcd. for $\mathrm{C}_{19} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{3}$: C, $70.79 ; \mathrm{H}, 5.63 ; \mathrm{N}, 8.69$. Found: C, 70.72; H, 5.67; N, 8.72.

13,13-Dimethyl-7-oxo-5,13-dihydro-7H-isoindolo[2,1-b][2]-benzazepine (37).

A mixture of amide 33a $0.5 \mathrm{~g}(1.81 \mathrm{mmol})$ and nitrobenzene $(30 \mathrm{~mL})$ was refluxed for 40 h (TLC monitoring). After that the reaction mixture was concentrated in vacuo and the crude product was purified by column chromatography on $\mathrm{Al}_{2} \mathrm{O}_{3}(1.5$ $\times 18 \mathrm{~cm}$, using hexane/ethyl acetate, $10: 1$ as eluent). The obtained yellow oil crystallizes to give the product 37. Beige crystals, yield 0.21 g (42%); mp 122-124 ${ }^{\circ} \mathrm{C}$ (ethyl acetate-hexane); $R_{\mathrm{f}} 0.69$ (ethyl acetate-hexane, 1:1); ir: 1680 $(\mathrm{N}-\mathrm{C}=\mathrm{O}) \mathrm{cm}^{-1} ; \mathrm{ms}: \mathrm{m} / \mathrm{z} \mathrm{M}^{+} 275$ (18), 260 (100), 245 (11), 232 (26), 202 (4), 130 (17), 102 (11), 77 (4), 39 (4); ${ }^{1} \mathrm{H} \mathrm{nmr}\left(\mathrm{CDCl}_{3}\right.$, $400 \mathrm{MHz}) \delta 1.74$ (s, 6H, Me-13), 5.24 (brs, 2H, H-5), 5.82 (s, $1 \mathrm{H}, \mathrm{H}-12$), 7.24 (dt, $1 \mathrm{H}, J=1.4,7.4 \mathrm{~Hz}, \mathrm{H}-2$), 7.31 (dt, 1 H , $J=1.4,7.4 \mathrm{~Hz}, \mathrm{H}-3$), 7.39 (dd, 1H, $J=1.4,7.4 \mathrm{~Hz}, \mathrm{H}-1$), 7.41 (dt, $1 \mathrm{H}, J=1.4,7.5 \mathrm{~Hz}, \mathrm{H}-9$), 7.43 (dd, $1 \mathrm{H}, J=1.4,7.4 \mathrm{~Hz}, \mathrm{H}-4), 7.51$ (dt, $1 \mathrm{H}, J=1.4,7.5 \mathrm{~Hz}, \mathrm{H}-10$), 7.60 (dd, $1 \mathrm{H}, J=1.4,7.5 \mathrm{~Hz}, \mathrm{H}-$ 11), 7.81 (dd, $1 \mathrm{H}, J=1.4,7.5 \mathrm{~Hz}, \mathrm{H}-11$).

Anal. Calcd. for $\mathrm{C}_{19} \mathrm{H}_{17} \mathrm{NO}: \mathrm{C}, 82.88 ; \mathrm{H}, 6.22 ; \mathrm{N}, 5.09$. Found: C, 82.90; H, 6.14; N, 5.11.

Acknowledgments.
The authors are grateful for the financial support by the Russian Foundation for Basic Research (grant no. 04-03-32 433).

REFERENCES AND NOTES

[1] F. I. Zubkov, E. V. Nikitina, K. F. Turchin, G. G. Aleksandrov, A. A. Safronova, R. S. Borisov, A. V. Varlamov, J. Org. Chem., 69, 432 (2004).
[2] F. I. Zubkov, E. V. Nikitina, K. F. Turchin, A. A. Safronova, R. S. Borisov, A. V. Varlamov, Russ. Chem. Bull. (Engl. transl.), 53, 860 (2004).
[3] F. I. Zubkov, E. V. Boltukhina, K. F. Turchin, R. S. Borisov, A. V. Varlamov, Tetrahedron, 61, 4099 (2005).
[4] E. V. Boltukhina, F. I. Zubkov, E. V. Nikitina, A. V. Varlamov, Synthesis, 1859 (2005).
[5] F. I. Zubkov, E. V. Boltukhina, E. V. Nikitina, A. V. Varlamov, Russ. Chem. Bull. (Engl. transl.), 53, 2816 (2004).
[6] F. I. Zubkov, E. V. Boltukhina, K. F. Turchin, A. V. Varlamov, Tetrahedron, 60, 8455 (2004).
[7] F. I. Zubkov, E. V. Boltukhina, A. P. Krapivko, A. V. Varlamov, Chem. Heterocycl. Compd. (Engl. transl.), 39, 1534 (2003).
[8] Last IMDAF review: F. I. Zubkov, E. V. Nikitina, A. V. Varlamov, Russ. Chem. Rev. (Engl. transl.), 74, 639 (2005).
[9] Y. Ishihara, Y. Kiyota, G. Goto, Chem. Pharm. Bull., 38, 3024 (1990).
[10] Y. Ishihara, T. Doi, H. Nagabukuro, Y. Ishichi, WO Patent 00/18391.
[11] Y. Ishihara, Y. Fujisawa, N. Furuyama, WO Patent 9846590 [Chem. Abstr., 129, 330744a (1998)].
[12] G. Goto, Y. Ishihara, M. Miyamoto, EP Patent 655451 [Chem. Abstr., 123, 198832x (1995)].
[13] G. Goto, Y. Ishihara, JP Patent 02042078 [Chem. Abstr., 113, 40431z (1990)].
[14] Z. Sui, J. Altom, V. N. Nguyen, J. Fernandez, J. I. Bernstein, J. J. Hiliard, J. F. Barrett, B. L. Podlogar, K. A. Ohemeng, Bioorg. Med. Chem., 6, 735 (1998).
[15] D. Bilović, Croat. Chem. Acta, 40 (1), 15 (1968) [Chem. Abstr., 69, 486751 (1968)].
[16] D. Bilović, Croat. Chem. Acta, 38, 293 (1966) [Chem. Abstr., 66, 55416 (1967)].
[17] D. Prajapati, D. R. Borthakur, J. S. Sandhu, J. Chem. Soc., Perkin Trans. 1, 1197 (1993).
[18] T. N. Borisova, L. G. Voskressensky, T. A. Soklakova, L. N. Kulikova, A. V. Varlamov, Mol. Diversity, 6, 207 (2003).
[19] A. V. Varlamov, T. N. Borisova, L. G. Voskressensky, T. A. Soklakova, L. N. Kulikova, A. I. Chernyshev, G. G. Alexandrov, Tetrahedron Lett., 43, 6767 (2002).
[20] C. Marchionni, P. Vogel, P. Roversi, Tetrahedron Lett., 37, 4149 (1996).
[21] M. Lautens, E. Fillion, J. Org. Chem., 61, 7994 (1996).
[22] M. Lautens, E. Fillion, J. Org. Chem., 62, 4418 (1997).
[23] M. E. Jung, Synlett, 186 (1990).
[24] M. E. Jung, J. Gervay, J. Am. Chem. Soc., 113, 224 (1991).
[25] M. E. Jung, M. Kiankarimi, J. Org. Chem., 63, 2968 (1998).
[26] Full crystallographic data (atomic coordinates, bond lengths, bond angles and thermal parameters) for structure 26c have been deposited with the Cambridge Crystallographic Data Centre (CCDC) as supplementary publication numbers CCDC 281912. Copies of the data can be obtained free of charge on application to CCDC, 12 Union Road, Cambridge, CB2 1EZ, UK (fax: +44-1223-336-033; e-mail: deposit@ccdc.cam.ac.uk).
[27] K. Paulvannan, Tetrahedron Lett., 40, 1851 (1999).
[28] F. Kienzle, Helv. Chim. Acta, 58, 123 (1975).
[29] C. Rogers, B. A. Keay, Can. J. Chem., 70, 2929 (1992).
[30] W. L. Nelson, D. R. Allen, J. Heterocycl. Chem., 9, 561 (1972).
[31] our stereochemical results compare favorably to those reported in the recent article: I. N. N. Namboothiri, M. Ganesh, S. M. Mobin, M. Cojocaru, J. Org. Chem., 70, 2235 (2005).
[32] O. G. Ausheva, V. A. Glushkov, S. N. Shurov, Yu. V. Shklyaev, Russ. Chem. Bull., Int. Ed., 50, 1648 (2001).
[33] V. A. Glushkov, O. G. Ausheva, Yu. V. Shklyaev, Russ. Chem. Bull., Int. Ed., 51, 709 (2002).
[34] V. A. Glushkov, O. G. Ausheva, Shurov, S. N.; Shklyaev, Yu. V. Russ. Chem. Bull., Int. Ed., 51, 894 (2002).
[35] C. O. Puentes, V. V. Kouznetsov, J. Heterocycl. Chem., 39, 595 (2002).
[36] V. V. Kouznetsov, S. V. Lantsetov, A. E. Aliev, A. V. Varlamov, N. S. Prostakov, Zh. Org. Khim., 28, 74 (1992) [Russ. J. Org. Chem. (Engl. Transl.), 28, 61 (1992)].
[37] A. V. Varlamov, V. V. Kouznetsov, F. I. Zubkov, A. I. Chernyshev, G. G. Alexandrov, A. R. Palma, L. Vargas, S. Salas, Synthesis, 849 (2001).
[38] SMART (control) and SAINT (integration) software, version 5.0 Bruker AXS Inc., Madison, WI, 1997.
[39] G. M. Sheldrick, SHELXS-97 - Program for the solution of crystal structures. University of Göttingen, Germany, 1997.
[40] G. M. Sheldrick, SHELXL-97 - Program for the refinement of crystal structures. University of Göttingen, Germany, 1997.
[41] A. V. Varlamov, V. V. Kouznetsov, F. I. Zubkov, A. I. Chernyshev, O. V. Shurupova, L. M. Vargas, A. R. Palma, J. R. Castro, A. J. Rosas-Romero, Synthesis, 771 (2002).

